
Cowbird: Freeing CPUs to Compute by Offloading the
Disaggregation of Memory

Xinyi Chen
University of Pennsylvania
cxinyic@seas.upenn.edu

Liangcheng Yu
University of Pennsylvania
leoyu@seas.upenn.edu

Vincent Liu
University of Pennsylvania
liuv@seas.upenn.edu

Qizhen Zhang
U of T and Microsoft
qz@cs.toronto.edu

ABSTRACT
Memory disaggregation allows applications running on compute
servers to expand their pool of available memory capacity by lever-
aging remote resources through low-latency networks. Unfortu-
nately, in existing software-level disaggregation frameworks, the
simple act of issuing requests to remote memory—paid on every
access—can consume many CPU cycles. This overhead represents a
direct cost to disaggregation, not only on the throughput of remote
memory access but also on application logic, which must contend
with the framework’s CPU overheads.

In this paper, we present Cowbird, a memory disaggregation
architecture that frees compute servers to fulfill their stated pur-
pose by removing disaggregation-related logic from their CPUs.
Our experimental evaluation shows that Cowbird eliminates dis-
aggregation overhead on compute-server CPUs and can improve
end-to-end application performance by up to 3.5× compared to
RDMA-only communication.

CCS CONCEPTS
• Networks → Programmable networks; In-network processing;
• Software and its engineering→ Software system structures.

KEYWORDS
Memory disaggregation, RDMA, Compute offload, Programmable
networks, Spot VMs, P4 programmable switches, SmartNICs

ACM Reference Format:
Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang. 2023. Cowbird:
Freeing CPUs to Compute by Offloading the Disaggregation of Memory.
In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), September 10–
14, 2023, New York, NY, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3603269.3604833

1 INTRODUCTION
Memory disaggregation—a design methodology in which applica-
tions are allowed to leverage physically distinct pools of memory—
promises data centers substantial operational benefits [4, 8, 11, 17,
20, 24, 32, 35, 40, 47]. To operators, it provides better cost efficiency,
increased flexibility when provisioning/upgrading hardware, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604833

 0

 0.5

 1

 1.5

 2

1 2 4

Local memory

N
o
rm

a
liz

e
d

 t
h
ro

u
g

h
p

u
t

of Application threads

Two-sided RDMA (sync)
One-sided RDMA (sync)

One-sided RDMA (async)
Cowbird (batching disabled)

Cowbird

Figure 1: Throughput of hash index probe of 256-byte ele-
ments in remote memory using different communication
primitives, normalized to the performance of local mem-
ory. Just calling an RDMA function induces large application
overheads; in comparison, Cowbird bridges the gap between
the performance of local and remote memory.

reduced resource fragmentation compared to monolithic designs.
To users, it provides significantly increased memory elasticity.

Disaggregation can take many forms, but broadly speaking, re-
cent proposals fall into one of two categories. The first is hardware-
level disaggregation like that envisioned by the CXL standard [2],
which leverages processor support and a specialized CXL inter-
connect to hide disaggregation behind traditional load/store in-
structions and a NUMA-like abstraction. The second is the class of
architectures that integrate disaggregation into the application or
OS layers, e.g., through RDMA verbs to far memory. Compared to
hardware-level solutions, these approaches enable access to a wider
set of memory resources, the possibility of application-specific op-
timizations (e.g., to cache coherency), and crucially, are available
and deployable today.

Unfortunately, without CPU-architecture support, it can be dif-
ficult to make existing software-level disaggregation mechanisms
performant. For example, in OS-level memory disaggregation (e.g.,
LegoOS [35], Infiniswap [17], and Fastswap [5]), compute nodes
must execute blocking page faults that switch execution contexts,
dispatch RPCs/RMAs to the remote memory server, and poll for
completions when the remote data is finally paged into the local
cache. Even application-level mechanisms that leverage kernel-
bypass and lightweight cooperative multitasking (e.g., Redy [47]
and AIFM [32]) must still consume CPU cycles/cores to issue RPCs
and otherwise manage communication.

As one example of this effect, consider the fetch of a piece of data
from remote memory using RDMA, which is already significantly
more efficient than the TCP/socket interface. Most RDMA-based
disaggregation frameworks implement these read RPC calls using
two-sided or double one-sided (one from the compute node and
one from the memory pool) RDMA operations [14, 35, 39, 47]. In
these RPCs, the client posts a request for data and busy polls until
the memory pool receives the request, issues one of its own to

1060

https://doi.org/10.1145/3603269.3604833
https://doi.org/10.1145/3603269.3604833
https://doi.org/10.1145/3603269.3604833
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604833&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang

write the data to the client memory, and the data finishes writing.
Waiting for this sequence to complete takes orders of magnitude
longer than local memory accesses and can substantially reduce
application performance. Figure 1 quantifies this slowdown using
a micro-benchmark of a hash index probe of remote data in the
testbed described in Section 7.

Many systems have tried to optimize the above process. For ex-
ample, eliminating the memory-pool logic can reduce the critical
execution path to include just a single one-sided operation from
the client; however, as shown in Figure 1, the performance ben-
efits of this optimization are minimal. Similarly, recent work has
tried to overlap communication and computation by separating
the posting of RDMA requests and polling for their completions,
progressing on other tasks in the interim using application-level
cooperative multitasking mechanisms [32, 47]. In the end, however,
even the simple act of calling two local RDMA functions, a post
followed by a later poll, can result in substantial overheads and
an order-of-magnitude slowdown in performance (see Section 2.1
for a discussion of why this happens). This effect becomes more
pronounced if the system needs to aggregate or batch requests to
mitigate RDMA’s request-level bottlenecks [47].

In a sense, software-level memory disaggregation, a technique
initially intended to allow better specialization of servers for ei-
ther compute or memory, instead imposes substantial compute-side
CPU utilization whenever memory is needed. These overheads
negate a significant fraction of the possible benefits of software-
level disaggregation and, as others have also noted, can reduce the
cost-efficiency of such systems compared to traditional architec-
tures [26, 48, 50].

In this paper, we propose Cowbird, a method for offloading the
administration of memory disaggregation from the compute node,
thus enabling their CPUs to focus on their intended task: computa-
tion. In Cowbird, the offloaded tasks are, instead, the responsibility
of devices like programmable switches [3] and SmartNICs [1, 15]
(which are extremely power efficient on a per-byte basis [30]) or
otherwise untilized CPU resources (which are ubiquitous in modern
clouds [6, 47]).

At the center of Cowbird is an I/O abstraction that—without ar-
chitectural support—allows applications to initiate remote memory
requests using purely local operations, which are then serviced
asynchronously by remote devices. Cowbird’s API is agnostic to
most properties of the offload platform and is, therefore, compati-
ble with a broad range of widely available commodity hardware.
We demonstrate this using two different implementations of the
Cowbird abstraction: one using programmable switches and the
other using spot-instance VMs.

Cowbird’s design leverages the ability of modern remote and
in-network compute to generate, read, and modify packets at high
rates. Using this ability, an offload platform running Cowbird can
continually poll compute-node memory and generate the necessary
RDMA requests/responses to service any outstanding requests; in
the meantime, the compute node can use the freed CPU cycles
to process other tasks in a pipelined fashion. Of course, a naïve
implementation of this mechanism on devices with limited com-
putational capability and little-to-no visibility into compute-side
behavior can lead to significant inefficiencies and performance bot-
tlenecks. Cowbird, thus, introduces several novel techniques for

batching, prioritization, and failure handling for efficient and robust
data transfers.

Note that while Cowbird’s generated messages impose network
overheads, prior work has shown that networks spend much of
their time idle [7, 37, 45] and devices can utilize those idle periods
with little-to-no impact on user traffic or power draw [44]. Similarly,
although Cowbird adds computation to outside components, of-
fload platforms are typically much cheaper per byte processed [30],
harder to monetize [6], and most importantly, out of the way of
users’ computations.

Our evaluation further shows that, with careful design, Cow-
bird can service typical application remote memory transfers at a
rate that is indistinguishable from a purely local version. Cowbird
eliminates CPU overheads, which unlocks application throughput
improvements of up to 9× versus one-sided RDMA [27] and 1.6×
versus Redy [47], a recent software-level disaggregation system.
More specifically, this paper makes the following contributions:
• We propose Cowbird, a memory disaggregation architecture
that converts remote memory accesses into local memory ac-
cesses without CPU architecture support by offloading the data
transfers.

• We show that Cowbird is general to several hardware settings
by implementing it on both Tofino programmable switches and
remote servers.

• Finally, we adapt FASTER [27], a production open-source KV
store, to use Cowbird. We show that with Cowbird, it can
achieve the same throughput as in-memory execution when
the working set is larger than local memory.

2 BACKGROUND AND MOTIVATION
We begin by providing background on both existing approaches
for memory disaggregation and the opportunities provided by spot
and in-network computing.

2.1 Memory Disaggregation
Memory disaggregation is a design methodology in which appli-
cations can leverage physically distinct memory, e.g., deployed to
dedicated memory pools or harvested from remote servers. The po-
tential benefits of this approach are broad and well-covered by prior
work [4, 8, 11, 17, 20, 24, 32, 35, 40, 47]. As previously mentioned,
proposals for memory disaggregation generally fall into two cate-
gories: hardware-level memory disaggregation and software-level
disaggregation.

Hardware-level disaggregation is exemplified by the nascent
CXL standard [2], which defines a communication mechanism be-
tween CPUs and physically distinct memory. CXL uses PCIe 5.0+’s
physical-layer interfaces but replaces the traditional PCIe proto-
cols and backplanes with CXL protocols and switches that provide
low-latency and cache-coherent access to a slightly expanded pool
of CXL-accessible memory. A goal of this approach is to hide the
complexity of disaggregation behind traditional LD/ST instructions.

Software-level disaggregation, in contrast, extends the benefits
of memory disaggregation to existing systems/hardware [17], fur-
ther afield stranded memory [47], and application-specific require-
ments [32, 46]. Unfortunately, while software-level disaggregation
broadens the applicability of disaggregation, prior work has shown

1061

Cowbird: Freeing CPUs to Compute by Offloading the Disaggregation of Memory ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

RDMA

Cowbird

 0 100 200 300 400 500 600 700
CPU time (ns)

Cowbird Post
Lock

Doorbell

Wqe

Cowbird Poll
Lock

Cqe

Figure 2: A breakdown of the compute-side CPU time of a
single Cowbird read versus that of an asynchronous one-
sided RDMA read. Red indicates a post task; blue a poll task.
Note that network delay is not included in this metric—when
the poll is called, the result is immediately available.

that it often incurs substantial overheads that partially offset any
increased elasticity and reduced resource fragmentation [48].

As shown in Figure 1, a key component of that overhead is the
CPU cost of initiating requests to remote memory. This is true of
kernel-based software-level disaggregation mechanisms like Le-
goOS [35], which executes a remote memory access as part of every
page fault, and Infiniswap [17], which treats remote memory as
swap space and also uses a separate daemon process to manage
remotely accessible memory. Both approaches require CPUs to
block during remote calls to ensure page table consistency. Even
for systems [32, 47] that do not block, however, the overhead of
RDMA calls can still be high. Figure 2 shows the total compute-side
CPU time of a read in both Cowbird and asynchronous one-sided
RDMA in the testbed described in Section 7. Note that, in this ex-
periment, the ibv_poll_cq() is called after the read completes, i.e.,
the latency is for a single check of the completion queue and shows
the minimum CPU overhead of communication.

In total, RDMA requires an order of magnitude more CPU time
than local memory writes and Cowbird. Although RDMA opera-
tions are conceptually simple (the post writes to an RDMA request
queue pair and rings a doorbell register; the poll reads from a com-
pletion queue), these operations take significant time, as indicated
by the detailed breakdown of Figure 2, obtained via rdtsc instru-
mentation of the Mellanox OFED driver. The reason is that each
of the above subtasks requires spinlocks, atomics, and/or multiple
expensive mfence/sfence instructions to ensure proper ordering of
queue and doorbell register accesses.

In the end, while existing systems significantly outperform prior
work and provide a number of important features, we argue that
they have all been hamstrung by the simple need to invoke RDMA
functions, often on a per-access basis.

2.2 Remote and In-network Computation
Parallel trends have led to the emergence of computational re-
sources separate from the traditional server architecture. These
compute resources are typically more constrained than traditional
CPUs (e.g., in their capabilities, performance, or availability) but
are also more cost-effective in terms of throughput per dollar [30].

In-network computation.One class of compute resource includes
devices like programmable switches or SmartNICs. For example, P4-
programmable Reconfigurable Match Table (RMT) switches have
recently sparked development of a growing spectrum of in-network
functions from fine-grained network monitoring [38, 42, 43] to
application-specific acceleration [30, 34]. RMT switches provide

VM type On-demand price Spot price

GCP: c3-standard-4 $0.257/h $0.059/h
AWS: m5.xlarge $0.192/h $0.049/h
Azure: D4s-v3 $0.236/h $0.023/h

Table 1: On-demand price and Spot instance price for VMs
with 4 vCPUs and 16GB memory on different cloud plat-
forms. Data is from July 24, 2023.

the abstraction of a pipeline of ‘reconfigurable’ match-action ta-
ble stages. Packets are processed sequentially such that each stage
only works on one packet at a time, although different stages are
pipelined. While not a Turing complete execution model, for appli-
cations that can fit their logic into an RMT pipeline, programmable
switches provide a cost-effective [30], line-rate platform for execut-
ing computation inside the network.

A similar platform for in-network computation is SmartNICs.
SmartNICs differ from traditional NICs by incorporating additional
programmable processing components (e.g., FPGAs and/or multi-
core SoCs) such that packets can be directed to the programmable
elements for more advanced packet processing logic. Like with pro-
grammable switches, operators have found that offloading amenable
tasks to these devices results in comparative cost savings and added
compute capacity for paying users [12, 15, 22, 25].

Harvested CPUs. Finally, in addition to the newfound programma-
bility of the devices described above, we note that many cloud
providers have found ways to expose existing, unused compute
capacity [6, 46, 47] to users. In fact, recent work has shown that
even during periods of higher compute utilization, around 18% of
CPUs in Microsoft’s Azure go unallocated and unused [46]. Spot
VMs are one way in which cloud providers expose these resources
in an attempt to reduce waste. Spot instances provide a similar ab-
straction and capabilities as standard instances but at a significantly
reduced cost. In return, the instances can be reclaimed by the cloud
provider at any time, although generally with a grace period of
several minutes and (anecdotally) a high likelihood of obtaining
a new spot allocation if one is requested. In Table 1, we collect
the price information for general-purpose VMs on different cloud
platforms. With spot instances, the cost can be reduced by up to
90%, which makes even small improvements to compute-node CPU
utilization worth it, especially if these instances can handle multi-
ple compute nodes simultaneously. Some cloud platforms like GCP
further provide pure spot CPUs with even lower prices: $0.009638
per vCPU-hour.

3 DESIGN OVERVIEW
The core idea behind Cowbird is to offload the transfer of memory
away from the compute node. From the compute node’s perspec-
tive, issuing a request in Cowbird involves only writes to local
memory, and asynchronous retrieval of its results requires only a
corresponding read. The overhead of RDMA is eliminated from the
compute node, thereby freeing the node’s CPU cycles to work on
applications’ compute tasks.

Instead, the data transfer is performed entirely by an offload
engine, which (a) ensures timely processing of user requests, (b)
implements batching and data packing to minimize load on the

1062

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang

Compute node

Request
buffer

Application

Response
buffer

SpotV

Offload Engine

Memory pool

Buffer pool

V

Client Library

RDMA write
RDMA read

Figure 3: The architecture of a Cowbird system. An offload
engine is responsible for actually executing data transfers
between the compute node and memory pool.

compute-side RNIC (in addition to reducing load on the compute-
side CPU), and (c) guarantees that all of the above respects sequen-
tial consistency even in the presence of multi-threaded applications.

The primary challenge in Cowbird’s design is the definition of
an interface and set of offloading protocols that are amenable to
offload on a wide range of offload engines, some of which were
not designed for uses like Cowbird but rather for more traditional
packet processing.

System components. Figure 3 illustrates the high-level architec-
ture of Cowbird. A Cowbird deployment consists of three main
components:

• The compute node is the machine that executes the user’s appli-
cation alongside the Cowbird client library. The library inter-
acts with request and response queues in local memory using
simple load and store instructions.

• The memory pool is the device that hosts the pool of remote
memory. This memory can be reserved or harvested from frag-
mented resources [47] but should be registered with the com-
pute node client library.

• Finally, an offload engine executes the compute node’s requested
transfers without compute-node intervention. The engine gen-
erates/modifies RDMA messages that poll the compute node
queues for new operations.

Figure 3 also sketches the flow of a typical Cowbird request
between these components, which includes: (1) the client library
writing to a lock-free request buffer, (2) the offload engine discover-
ing the request and executing the requested transfer using spoofed,
asynchronous RDMA messages, and (3) the offload engine posting
the results to a response buffer.

While the Cowbird offload engine can be implemented on any
platform that can generate and modify RDMA packets, in this paper,
we focus on the possible variants on two contrasting platforms:
P4 programmable switches (Section 5) and harvested spot VMs
(Section 6). Our goal is not to advocate for one over the other—each
variant has a different set of tradeoffs, and we anticipate that the
ideal variant will depend on the specifics of each network operator.
Instead, our goal is to demonstrate that it is possible to excise
disaggregation from the compute-node CPU and that the Cowbird
architecture is a general and effective way of doing so.

Request
metadata
buffer

Request
data buffer

Response
data buffer

async_write(...)

async_read(...)

Client library RDMA buffers

Max write req ID; Max read req ID

h

h

h

t

t

t

Figure 4: Relationship between client operations and the
three compute-side buffers. 𝒉 and 𝒕 indicate the head and
tail pointers. Red pointers and counters are packed into a
contiguous memory block and updated by the offload engine.
Green pointers are also packed and read by the offload engine
with a single request.

4 THE COWBIRD COMPUTE NODE
We begin by describing the Cowbird API and client library on the
compute node, whose operation is independent of the Cowbird
offload platform and its specific capabilities.

4.1 The Cowbird API
Applications use Cowbird through the API calls listed in Table 2.
Chief among them are two calls, async_read() and async_write(),
which initiate asynchronous reads and writes to remote memory,
respectively. All references to remote memory are expressed as
an offset from the base memory_pool_addr of the allocated remote
memory region, which is configured when the region is initialized.

Both the read and write functions return a request ID that can
be used to retrieve results later. To that end, Cowbird provides
an epoll-like interface for using those request IDs to check for
completions efficiently. Users first poll_create a notification group
for their requests, poll_add request IDs to that group, and then
poll_wait for completions. Simple extensions can be made to the
API to allow convenience methods like traditional select/poll
semantics or an implicit notification group tied to each read and
write. Note that, unlike actual epoll calls, Cowbird imposes some
ordering constraints on the execution order of requests and returned
responses, e.g., between the same operation types when issued by
a single thread or when there are read-after-write dependencies to
ensure linearizability.

4.2 Data Organization
Under the hood, async_read() and async_write() calls append re-
quest objects to local-memory queues, while poll_wait() checks
the response buffers, also in local memory. A naïve implementa-
tion of these queues might simply marshall each request and its
payload into a contiguous queue item, and do the reverse on the
response-side. Unfortunately, each request can be of variable size,
which interacts poorly with offload platforms that are optimized for

1063

Cowbird: Freeing CPUs to Compute by Offloading the Disaggregation of Memory ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

API Description

async_read(region_id, src, dest, length) Asynchronous call to read data from a remote source address to local destination with specified
length. Returns a request ID.

async_write(region_id, src, dest, length) Asynchronous call to write data from a local source address to a remote destination with
specified length. Returns a request ID.

poll_create() Initialize a notification group for Cowbird requests. Returns a poll ID.
poll_{add/remove}(poll_id, req_id) Add/remove a request to/from an existing poll notification group.
poll_wait(poll_id, responses, max_ret, timeout) Wait until either we receive max_ret completions or hit the timeout.

Table 2: Cowbird’s simple, user-space API, shown here in C++.

packet processing, e.g., due to complex conditionals in request pars-
ing and the possibility of segmentation. More generally, Cowbird
requires the following of its data organization scheme:

R1 Efficient processing by packet-centric devices: Requests must
be easily parsed, batched, and parallelized without the need
for complex conditionals (e.g., to handle arbitrarily spaced
header content).

R2 Lock-free coordination: Cowbird must avoid the expensive
coordination required by the more general RDMA API, while
guaranteeing consistency between application threads and
the offload platform.

R3 Minimized RDMA message count requirements: Finally, to mit-
igate the latency of moving RDMA logic off of the compute
node, Cowbird must minimize the number of RDMA opera-
tions per application-level request.

Request queues.On the request side, Cowbird achieves R1/2 using
two separate physical data structures: one for fixed-size request
metadata and the other for the associated data in the case of a write
request. Both are laid out as per-hardware-thread, lock-free circular
buffers whose structures are depicted in Figure 4.

The anatomy of a single entry of the request metadata buffer is
shown in Table 3. rw_type is a value to indicate whether the request
is valid and, if so, a read or write (padded to ensure alignment).
req_addr represents the address to retrieve the data. For a read
request, req_addrwill be a valid address from the memory node. For
a write request, req_addr will be a valid address from the compute
node. resp_addr represents the address to write into after the data
is retrieved from req_addr. The fourth field is length, which is the
length of the real data to be read/written. Finally, the region_id

uniquely identifies the target memory block.
The data buffer that stores payloads for write requests, in con-

trast, contains entries of variable length without any per-request
metadata. Rather, clients append to-be-written data to the circular
buffer in its raw form and will reference the region in the request
metadata.

Response buffers. The response data buffer follows the format
of the request data buffer. Raw data from reads are appended di-
rectly to the buffer without any per-response metadata; writes are
not reflected in the circular buffer at all. Instead, the progress of
operations is tracked by two fields:

• Write progress: Request-id of the last completed write.
• Read progress: Request-id of the last completed read.

Because Cowbird guarantees per-type linearizability, these are suf-
ficient to track the progress of the offload engine.

Field Bits Valid domain

rw_type 16 compute and memory
req_addr 64 memory(read); compute(write)
resp_addr 64 compute(read); memory(write)
length 32 compute and memory
region_id 16 compute and memory

Table 3: Fields in a Cowbird request metadata block.

Bookkeeping. To reduce the message count (R3), all bookkeeping
data (i.e., head/tail pointers and progress tracking) are packed into
a contiguous memory region indexed by the writer/reader. The
colors of metadata in Figure 4 illustrate this categorization, which
ensures that all relevant metadata can be read/written with a single
RDMA request. Offload-engine batching (described in Section 6)
will further reduce the number of underlying RDMA messages
under load.

4.3 Client Library Operation
The client library is responsible for the compute-side functions of
the Cowbird API, which involves copying the requests from appli-
cation threads into the request buffers and copying the responses
back from response buffers while maintaining bookkeeping for
both. The library code only executes when the application invokes
a Cowbird API; there are no background operations.

Issuing a request. Upon invocation of an async_read or write,
Cowbird executes a set of local-memory writes to prepare the re-
quest metadata and append the information to the appropriate
queues. Briefly, for a read request, the library (1) atomically incre-
ments the request metadata tail pointer, (2) atomically increments
the response data tail pointer, and (3) populates the five fields of
Table 3 in the newly reserved request metadata entry appropriately.
The rw_type cache line is written last and signals that the request is
ready to execute. With x86-TSO, this sequence of atomic increments
and writes guarantees consistent request issuance even without
explicit locks or mfence instructions. Notably, the ordering of en-
tries in the metadata and data buffers can differ, but their content
remains consistent. Writes are similar but reserve and fill in an
entry in the request data buffer instead of the response data buffer.

If, at any point, there is insufficient space in any of the queues
or buffers, the library will return an error indicating that the ap-
plication should retry later. In the case of a write, the retry can be
immediate; in the case of a read, the application should process
existing reads to clear buffer space before continuing. New requests
cannot be queued until these operations are fully issued.

1064

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang

Headers Packet type Fields

BTH All RDMA packets opcode, QPN, PSN
RETH RDMA read request

RDMA write request
virtual address,
remote key, length

AETH RDMA read response
RDMA acknowledgment

syndrome, MSN

Table 4: RDMA headers used by Cowbird-P4.

Handling responses. Clients of Cowbird are presented with an
asynchronous communication abstraction. After filling the network
delays with computation or pipelined request calls, client applica-
tions process responses by invoking a Cowbird API call, eliminating
the need for interrupts or context switches. As mentioned, Cowbird
processes requests of the same type and from the same region in
linearized order, so the progress counters introduced in Section 4.2
can fully determine the set of completed responses. Moreover, track-
ing and polling for completions become very efficient operations
in this model.

poll_create() allocates a list of (region_id, req_id) tuples.
Adding or removing requests from the notification group updates
an integer for the associated region that tracks the maximum regis-
tered req_id. The system knows that requests are complete when
the response buffers’ write and read progress indicators surpass
each request, and it checks for such completions in every poll* call.
For efficiency, req_ids are generated to encode their operation type,
region id, and the incremented per-request id such that almost all
checks can be done with simple integer arithmetic and comparison.

5 COWBIRD-P4 OFFLOAD ENGINE
In this section, we provide a proof-of-concept offload engine im-
plementation, Cowbird-P4, that leverages programmable network
devices adjacent to the compute node. Cowbird-P4 provides an
interesting case study as these devices provide some of the most
restrictive execution models among available offload platforms. At
the same time, using these devices allows Cowbird-P4 to fully of-
fload the movement of data from comparatively more expensive
general-purpose CPUs.

Regardless of platform, we define several critical requirements
of any Cowbird offload engine implementation:

S1 High maximum request rate: For both throughput and latency,
the offload engine should be able to poll the client-side request
queues at a high rate.

S2 Minimized per-request message overhead: Related to S1 and R3
of Section 4.2, the engine should also minimize the message
overhead of each application-level request. In Cowbird-P4,
this includes ensuring no recirculation overhead and promot-
ing batched fetches of requests.

S3 Consistency: In cooperation with R2, a Cowbird offload en-
gine should provide consistency guarantees. As mentioned,
Cowbird provides a particularly strong level of consistency—
linearizability.

S4 Fault tolerance: Finally, the engine should be resilient to con-
gestion and occasional packet drops.

Request pool

Metadata

Data

Response pool

Data

Parse

Compute node Switch

4

Execute RDMA read request3

4 Parse metadata in packet payload

Head/tail pointers Probe

Execute RDMA read request1

2 Check tail pointer for updates

1

3

2

Figure 5: Cowbird-P4 probe phase procedure.

5.1 Wire Format
Cowbird-P4 is built on top of the RDMA over Converged Ethernet
version 2 (RoCEv2) protocol [10]. RoCEv2 allows RDMA packets
to be carried across Ethernet networks and processed by Ethernet
switches. Switches are able to generate and modify these packets at
line rate, which consist of the following headers, in order: Ethernet,
IP, UDP, and base transport (BTH)1. They may also contain RETH
and AETH headers, depending on the type of the packet (see Table 4
for the relevant headers and contents).

5.2 Communication Protocol
The Cowbird-P4 protocol consists of four phases: Setup, Probe,
Execute, and Complete. The first phase occurs when the application
starts. The last three occur on a per-request basis. For simplicity,
we first consider a single request in isolation and generalize in
Sections 5.3 and 5.4.

Phase I: Setup. The compute node and memory pool will begin by
initializing an RDMA connection and registering buffer memory
regions on both sides of the connection. The compute node will
then send the switch configuration information through an RPC
endpoint running on the switch control plane, i.e., the QP numbers;
the current PSN for each QP; and the base memory addresses,
remote keys, and total size of all registered memory regions. The
switch will use this information to allocate the required register
space and reconfigure packet generation to supply RDMA packets
of the format specified in Table 4. Modifications or termination of
the channel also occur through this interface.

Phase II: Probe. In the Probe phase, the switch periodically gener-
ates RDMA read requests to check whether the tail of the compute
node’s request metadata queue hasmoved and new requests become
ready to process.

Modern switches can generate packets quickly enough to satu-
rate all outgoing links with probe packets; however, doing so could
result in high bandwidth overheads. To mitigate potential over-
heads, Cowbird-P4 configures the probes with the lowest priority
across the switch pipeline (i.e., in the ingress arbiter, trafficmanager,
and egress arbiter). Prior work [44] has shown that with proper pri-
ority settings, low-priority packet injection has little-to-no impact
on user network traffic or switch power consumption. It further

1Current programmable switch implementations cannot compute RDMA iCRCs, so
like [34], Cowbird-P4 disables these checks on the end host; however, this limitation
is not fundamental.

1065

Cowbird: Freeing CPUs to Compute by Offloading the Disaggregation of Memory ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Request pool

Metadata

Data

Response pool

Data

Buffer

Parse

read request

Pipeline

Pipeline

write request

RDMA write
Compute node Memory pool

Switch
RDMA read

2a

Fetch requested data
from memory pool1a

2a
Convert fetched RDMA
read response into an
RDMA write of the result

Convert RDMA ACK into
RDMA write of updated
pointers/counters

3a3a

Head/tail pointers

1a

Figure 6: Operation of the Cowbird-P4 Execute and Complete phases for read requests.

limits probe rates to a configurable application-specific expected
host-level I/O throughput (1 probe per 2 μs for our prototype imple-
mentation of FASTER). The probe sizes are small enough that the
worst-case memory bus overhead is less than 0.1%. Note that the
switch can also start at a low baseline rate and ramp up only when
activity is detected, allowing users to tradeoff extra probe memory
accesses with worst-case completion latency while maintaining
high throughput.

The switch tracks its view of the head and tail pointers in state-
ful data-plane registers. For each probe response, the switch will
compare the received tail pointer with the previous value and, if
different, it will issue one or more RDMA read requests for the
contents of the request metadata queue (head→tail). Specifically,
the switch will take the probe response, recycle it by removing the
AETH header and adding a RETH header (creating an RDMA read
request), and then use it to read starting from the local head pointer.

Figure 5 visualizes the procedure for retrieving new request
metadata. The Cowbird-P4 switch checks for new requests in Steps
1 and 2. If the request metadata tail pointer has advanced, it issues
an RDMA read in Steps 3 and 4.

Phase III: Execute. After the switch receives the metadata for a
new request, it enters the Execute phase to execute the transfer.
Depending on the rw_type, the protocol diverges.

For read requests, the protocol follows the first two steps in
Figure 6. In Step 1a, the switch recycles the RDMA read response
packet from Phase II to—without relying on packet generation—
create a new RDMA read request that will fetch the requested
data from the memory pool; it can craft the content of this packet
using only the request metadata and stored connection state from
stateful data plane registers. In addition to sending this packet
to the memory pool, Cowbird-P4 also stores the target response
address in a hash table so that it knows where to write the data in
the subsequent step.

The memory pool responds to the Step 1a request like any other
RDMA read. Although the switch cannot parse the contents of the
response (due to PHV limitations), Cowbird-P4 can, similar to Step
2a, recycle the read response to create an RDMA write request with
a new header and the unmodified read-response payload as the
contents to write. Note that when the requested data size is larger
than 1024 bytes, RDMA will automatically segment the response
into RDMA Read Response First, Middle, and Last packets. Cowbird-
P4 will convert them into the corresponding RDMA Write packets:
Write First, Middle, and Last.

Write requests in Cowbird are executed similarly, but with the
source and destinations of all messages reversed. The process is
illustrated in Figure 7 (Steps 1b & 2b).

Phase IV: Complete. After Cowbird-P4 finishes transferring the
data in Phase III, the final step is to update counters and pointers
in the compute node to signal completion and enable overwriting
of old requests.

Cowbird-P4 does this by sending an RDMA write request to the
compute node (again, recycling the previous RDMA response/ac-
knowledgment) to update the request metadata/data head pointers,
the response data tail pointer, and the read/write completion coun-
ters using current values. All the pointer and counter updates can
be applied using a single RDMA write request to the contiguous
memory block mentioned in Section 4.2. This process is identical
for Cowbird reads and writes (Step 3 in both Figures 6 and 7).

5.3 Consistency and Fault Tolerance
The above procedure assumes a single async_read/write call and
no packet drops. In practice, packets from all three phases may be
in flight concurrently, and some can be dropped. For example, if
the switch queries the request metadata queue and receives a new
request, 𝑖 , as part of the Probe phase, it will convert the packet to a
Phase III Step 1 RDMA read request. While that request is still in
flight, the switch will issue another Probe request packet to check
for request 𝑖 + 1, which may also advance to further phases before
𝑖 completes.

Consistency. In the face of concurrency, Cowbird-P4 ensures lin-
earizability. To see how, we first note that the switch probes all
requests in FIFO order and interdicts all RDMA operations. Thus,
the programmable switch’s data plane pipeline serves as a serial-
ization point for all requests.

Within a request type (read or write), execution will never be
reordered from the data plane initiation order. Across request types,
however, some reordering is possible, e.g., when the switch-to-
memory path is congested. In this case, a naïve implementation
may cause Phase III Step 1b to become delayed, causing subsequent
reads to fetch stale data. In general, Cowbird needs to halt process-
ing of newly probed reads only during the execution of writes on
an overlapping address in Phase III Step 1b. Cowbird-Spot takes ex-
actly this approach. Unfortunately, current programmable switches
struggle to implement the range queries necessary for that logic.
Instead, Cowbird-P4 temporarily pauses the processing of all newly
probed reads to maintain linearizability. Other instances can keep

1066

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang

Request pool

Metadata

Data

Response pool

Data

Buffer

Parse

read request

Pipeline

Pipeline

write request

RDMA write
Compute node Memory pool

Switch
RDMA read

1b

Fetch to-be-written data
from compute node1b

2b
Convert fetched RDMA
read response into an
RDMA write of the result

Convert RDMA ACK into
RDMA write of updated
pointers/counters

3b

3bHead/tail pointers

2b

Figure 7: Operation of the Cowbird-P4 Execute and Complete phases for write requests.

the switch busy during these periods (see Section 5.4). Step 2b and
subsequent operations are not explicitly synchronized as they will
be serialized by the switch/RNIC.

Fault tolerance. With PFC enabled, packets in Cowbird-P4 can
be lost due to corruption. Without PFC enabled, congestive losses
may also be possible, primarily in Phase III between the switch
and memory pool as the switch and compute node are adjacent.
However, regardless of the location and cause of the loss, Cowbird
can recover using data plane timeouts and retransmissions trig-
gered by the periodic locally generated packets. From the switch’s
perspective, losing an outgoing packet toward either machine will
result in PSN desynchronization and all subsequent packets being
rejected. In contrast, the loss of an incoming packet will appear as a
gap in the execution history. In both cases, Cowbird-P4 can detect
a timeout and utilize a Go-Back-N approach by resetting the local
head pointer and PSN and re-executing the Probe phase starting
from that point.

5.4 Handling Multiple Cowbird Instances
While different threads and memory regions can use a single set
of compute-node request/response queues, there may be instances
where multiple sets of queues are required (e.g., for isolation or
multiple compute/memory node pairs).

The Cowbird-P4 switch handles requests from different instances
using time-division multiplexing. Specifically, in the Probe phase,
the switch will cycle between all registered instances in a round-
robin fashion. Note that more complex policies are possible, e.g., to
prioritize more active applications; however, we leave a full explo-
ration of those policies to future work. Note also that multiplexing
may not be necessary if the instances are on servers are connected
to different ports—the Cowbird-P4 switch can generate probes at
the maximum rate for every compute-facing physical port.

Non-Probe phases of the protocol proceed normally, triggered as
before by incoming RDMA requests/responses. The main challenge
is that, while the request metadata fetched in Phase II will include
the instance ID in the request contents, subsequent packets will not.
Packet tagging is not possible as Cowbird-P4 must be compatible
with existing RNIC implementations. Instead, Cowbird-P4 stores a
QPN-to-instance-ID mapping, which it queries at every step.

6 COWBIRD-SPOT OFFLOAD ENGINE
Wepresent a second variant of the Cowbird offload engine, Cowbird-
Spot. Compared to Cowbird-P4, Cowbird-Spot sits on the other
end of the spectrum and utilizes general-purpose processors to

offload memory transfers. These compute resources can come from
many different sources, e.g., the ARM cores of a SmartNIC [1], the
management CPU of a harvested-memory VM [47], or a separate
spot instance dedicated to data-transfer offload. For simplicity, we
assume the environment of [47], but the design should be general-
izable. The distinguishing feature of this class of implementations
is its ability to perform arbitrary computations and manipulate
temporary local memory. Based on our evaluation, Cowbird-Spot
offload requires minimal CPU capacity.

Request processing. The high-level protocol of Cowbird-Spot is
nearly identical to that of Cowbird-P4—it implements all the steps
of Section 5.2, but instead of generating and recycling raw packets
in the switch data plane, it initiates RDMA operations through
traditional, host-level RDMA interfaces with an event-driven agent
process running on the offload processor. At a protocol level, the
primary differences between the two variants occurs in Phase III.
The agent parses the fetched metadata requests and executes the
requested transfers through a series of RDMA requests. Unlike
Cowbird-P4, the processor can perform a simple check for overlap-
ping memory ranges so that it only needs to pause per-thread reads
when absolutely necessary for consistency. Also unlike Cowbird-P4,
the offload processor can batch BATCH_SIZE read responses in its
local memory before issuing a single RDMA write for the whole
batch to the compute node in Step 2a. Batching in this manner
further reduces the load on the compute node and its network inter-
face card. It also results in lower compute overhead on the offload
engine as a result of issuing fewer RDMA calls. Both can improve
the cost-efficiency of Cowbird.

7 CASE STUDY: THE FASTER KV STORE
We implement Cowbird on a testbed with a Wedge100BF-32X
switch, which contains a Tofino programmable switch ASIC. The
servers are equipped with Intel Xeon Silver 4110 CPUs (8 physical
cores with hyper-threading) and 96GB RAM and connected via
100Gbps NVIDIAMellanox ConnectX-5 NICs. In total, the Cowbird-
P4 offload engine consists of ∼1700 lines of P4 for the data plane and
∼500 lines of Python for the control plane. Cowbird-Spot contains
2000 lines of C++.

As a proof of concept, we port FASTER, an open-source key-
value store system from Microsoft, to use Cowbird. FASTER is an
attractive platform as: (1) it represents a production system that can
directly benefit from increased memory capacity, and (2) it already
supports memory disaggregation with Redy [47] that is based on
compute-initiated RDMA.

1067

Cowbird: Freeing CPUs to Compute by Offloading the Disaggregation of Memory ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1 2 4 8 16

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of Application threads

Two-sided RDMA (sync)
One-sided RDMA (sync)

One-sided RDMA (async)
Cowbird (batching disabled)

Cowbird
Local memory

(a) Uniformly accessing 8-byte records

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 4 8 16

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of Application threads

Two-sided RDMA (sync)
One-sided RDMA (sync)

One-sided RDMA (async)
Cowbird (batching disabled)

Cowbird
Local memory

(b) Uniformly accessing 64-byte records

 0
 10
 20
 30
 40
 50
 60
 70

1 2 4 8 16

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of Application threads

Two-sided RDMA (sync)
One-sided RDMA (sync)

One-sided RDMA (async)
Cowbird (batching disabled)

Cowbird
Local memory

(c) Uniformly accessing 256-byte records

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of Application threads

Two-sided RDMA (sync)
One-sided RDMA (sync)

One-sided RDMA (async)
Cowbird (batching disabled)

Cowbird
Local memory

(d) Uniformly accessing 512-byte records

Figure 8: Hash table performance backed by disaggregated memory. Dashed lines in (c) and (d) represent the upper-bound by
bandwidth. Cowbird closes the gap between remote and local memory until the bandwidth limit.

Records in FASTER are stored in a hybrid log—a log partitioned
across main memory (the tail of the log that is writable) and storage
(the read-only part of the log). A read operation to the key-value
store first looks up the log address in a hash index and then retrieves
the record from either main memory or storage. For the insertion
operation, the record is first appended to the tail of the hybrid log
and added to the index. When main memory is insufficient, older
data will be appended to storage, e.g., SSDs or remote memory.

We adapt FASTER to use Cowbird by instantiating an IDevice,
the interface FASTER exposes for implementing its storage layer
for the larger-than-memory part of the log. To reduce contention,
each FASTER thread calls through the device poll_create() to
create a notification group. After issuing an I/O operation with
async_read() or async_write(), a thread immediately calls poll-
_add() to add the request to the notification group and invokes
poll_wait() periodically to complete pending requests. The sim-
ple interface of Cowbird makes the integration straightforward.

8 EVALUATION
We validate Cowbird by answering the following questions.

• Can Cowbird deliver its promise of focusing CPUs on the com-
pute node on application workloads? What does it mean to
application performance?

• How does Cowbird perform compared to state-of-the-art ap-
proaches to disaggregating memory?

• Does Cowbird impact latency in a negative way?
• What is its impact on network resources and bandwidth?

Methodology. Our evaluation consists of two workloads: (1) a
throughput microbenchmark with a hash table where a hundred
million records are split between compute-localmemory (5%) and re-
mote memory (95%) and (2) FASTER with the YCSB benchmark [13].
Recent production traces [9] show that record sizes in real-world

key-value stores are generally small and mostly range from 8 to
512 bytes. In the microbenchmark, we compare Cowbird-Spot
with different RDMA baselines (two-sided/one-sided verbs and
synchronous/asynchronous I/O). To evaluate whether Cowbird ef-
ficiency generalizes to different offloading hardware, we include
both Cowbird-P4 and Cowbird-Spot to speed up FASTER along
with three baselines as follows.

• Secondary storage (the default storage backend in FASTER) that
uses a local SATA SSD with 6Gbs throughput on the compute
node to store the read-only portion of the hybrid log.

• One-sided RDMA, an alternative design of an IDevice that can
leverage remote memory using traditional one-sided RDMA
verbs. This baseline does not assume any remote compute
capabilities, so the compute node is responsible for all data
transfers. We include both synchronous and asynchronous
communication.

• Purely local memory that represents an upper bound on disag-
gregated memory performance, for which we create an IDevice

that utilizes only compute-local memory and does not leverage
any remote memory.

Unless otherwise specified, experiments were run on the testbed
described in the previous section.

8.1 Remote Memory Performance
We first evaluate how the benefits of Cowbird’s asynchronous I/O
and communication offloading are reflected in overall application
performance with disaggregated memory. Synchronous one- and
two-sided RDMA issue one request at a time. Asynchronous one-
sided RDMA issues requests in batches of size 100 and overlaps
communication and computation, as does Cowbird. Results shown
are for Cowbird-Spot but are identical for other variants.

1068

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of FASTER threads

SSD
One-sided RDMA (sync)

One-sided RDMA (async)
Cowbird-P4

Cowbird-Spot
Local memory

(a) 64-byte records

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of FASTER threads

SSD
One-sided RDMA (sync)

One-sided RDMA (async)
Cowbird-P4

Cowbird-Spot
Local memory

(b) 512-byte records

Figure 9: FASTER performance on YCSB (Zipfian 𝜽=0.99) with Cowbird and baseline storage backends.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

C
o
m

m
u
n
ic

a
ti

o
n
 r

a
ti

o

of FASTER threads

One-sided
RDMA (sync)

One-sided
RDMA (async)

Cowbird-P4 Cowbird-Spot

(a) 64-byte records

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

C
o
m

m
u
n
ic

a
ti

o
n
 r

a
ti

o

of FASTER threads

One-sided
RDMA (sync)

One-sided
RDMA (async)

Cowbird-P4 Cowbird-Spot

(b) 512-byte records

Figure 10: The effect of Cowbird’s CPU savings for FASTER with Cowbird and baseline storage backends. The communication
ratio is defined as the time spent in the communication library over the total execution time of the application.

Microbenchmark results. The hash table throughput test stresses
Cowbird in two representative scenarios. When performance is lim-
ited by applications’ own efficiencies (i.e., not network bandwidth),
we expect remote memory with Cowbird to achieve similar per-
formance as local memory. Otherwise, when applications spawn
sufficient threads, Cowbird should easily drive the throughput to
the network bandwidth bottleneck. Figures 8a and 8b confirm the
first expectation, where the application accesses small (8 B and 64 B)
records. These experiments show that (1) asynchronous I/O is an
order of magnitude more efficient, (2) offloading communication
with Cowbird brings additional performance win compared to asyn-
chronous RDMA, and (3) batching with Cowbird is up to 3.5× faster
than RDMA and closes the gap between local and remote memory
performance (within 11.4%).

Figures 8c and 8d validate the other expectation—when access-
ing larger records, the application can fully utilize the network
bandwidth with 16 threads using Cowbird. Note that for larger
message sizes and thread counts, asynchronous one-sided RDMA
can also eventually reach network bandwidth saturation but does
so at much higher values of both. Thus, while applications with a
consistent stream of large messages may not benefit significantly
from Cowbird’s CPU savings, compute-bound workloads will.

Benchmarking FASTER.We create YCSB databases with 8 B keys
for both small (64 B) and large (512 B) values that contain 250 and
50 million records, respectively. The total data sizes in FASTER are
18GB and 24GB, and we configure FASTER to utilize 5GB local
memory for the tail of the log. The remaining data is stored in the
IDevice instantiation and to serve skewed YCSB workloads. This
configuration ensures that most operations are serviced by the
storage layer (SSDs or remote memory) to stress the performance
of Cowbird and the baselines. We scale application threads up to

all available cores on the compute node. Figures 9 and 10 show the
results for both database configurations.

One conclusion we can draw from Figures 9a and 9b is that
utilizing remote memory for FASTER is at least 2.3× faster than
SSDs. Cowbird further boosts this advantage: the speedup with
Cowbird ranges from 12× to 84×. These results show that spilling
state to remote memory results in significantly better performance
than using secondary storage. In fact, compared to the performance
of using local memory, we can see that Cowbird is consistently
within 8% of that of local memory, validating the close-to-local-
memory performance seen in the microbenchmark. A key reason
for this performance benefit is the ability of Cowbird to reduce
the time that the application spends on communication and reduce
the performance overhead of disaggregation. Figure 10 depicts the
communication ratio of the systems, defined as the time spent
in the communication library over the total execution time of the
application. FASTERwith synchronous RDMA can spendmore than
80% of its time on communication tasks, while Cowbird consistently
spends less than 20%, with much of that in wrapper code. Note that
in both Figures 9a and 9b, the relative overhead of asynchronous
one-sided RDMA reduces with higher thread counts as the end-
to-end performance bottleneck becomes FASTER’s cross-thread
coordination in IDevice. Amore embarrassingly parallel application
would exhibit performance closer to that of Figure 8.

Finally, we draw attention to the comparison between Cowbird-
Spot and Cowbird-P4 to investigate the generalizability of Cowbird
benefits to different offloading hardware. The figures show that
these two approaches achieve similar performance across different
workloads and scalability settings and improve FASTER throughput
by up to 40% compared to asynchronous RDMA.

1069

Cowbird: Freeing CPUs to Compute by Offloading the Disaggregation of Memory ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16

O
u
t

o
f

co
re

s

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of FASTER threads

Redy Cowbird-Spot

Figure 11: FASTER throughput with Cowbird and Redy.

 0

 5

 10

 15

 20

 25

1 2 4 8 16

T
h
ro

u
g

h
p

u
t

(M
O

P
S

)

of Application threads

AIFM Cowbird-Spot

Figure 12: Throughput of uniformly reading 8B objects from
remote memory with Cowbird and AIFM.

In summary, our experimental results demonstrate that Cow-
bird successfully reduces the workload of the compute node CPUs,
freeing them for processing application workloads.

8.2 Comparison with Other Approaches
In addition to comparing Cowbird to the alternative communication
primitives in the previous subsection, we also compare Cowbird to
two recent application-integrated disaggregation frameworks.

Cowbird versus Redy. Redy [47] is a system that utilizes remote
memory as an in-memory cache by exploiting RDMA. To achieve
high throughput, it batches user requests and sends them to the
memory server through RDMA connections that are optimized
for throughput. Upon receiving the batched requests, the memory
server processes the requests sequentially and then writes back a
batch of responses to the client. In optimizing performance, Redy
spawns extra I/O threads that are pinned to physical cores on the
compute node for batching requests and processing completions.

We run FASTER with Cowbird-Spot and Redy using the YCSB
benchmark (64-byte records, uniform, 1GB local memory). With
Redy, the number of threads varies from 1 to 8 since Redy needs
extra cores for its I/O threads. In fact, even when we allocate 8
cores to FASTER, the remaining cores are not sufficient for Redy
to achieve its optimal performance, as shown in Figure 11. This
experiment demonstrates Cowbird’s benefits of saving more cores
for applications.

Cowbird versus AIFM. AIFM [32] is another state-of-the-art
userspace memory disaggregation solution. After sending a remote
memory request, AIFM uses Shenango [29] to free the core and
allow other threads to swap in. The original thread is scheduled
again when the data is ready. For these experiments, we used an
unmodified version of AIFM using their recommended deployment
on CloudLab’s xl170 instances. We deployed Cowbird-Spot on the
same testbed with access to the same resources to ensure a fair

 0

 10

 20

 30

 40

 50

8 64 256 512 1024 2048

La
te

n
cy

 (
µ

s)

Record size (bytes)

One-sided
RDMA (sync)

One-sided
RDMA (async)

Cowbird
(no batching)

Cowbird
(batching)

Figure 13: Cowbird-Spot andRDMA latency comparison. Bars
and capped lines show the median and tail (p99).

comparison. We conduct experiments with random reads of 8-byte
objects on both AIFM and Cowbird. Figure 12 shows that Cow-
bird achieves an order of magnitude (up to 71×) higher throughput
across thread counts.

8.3 Cowbird Latency
As an asynchronous communication abstraction, Cowbird is pri-
marily concerned with throughput, of both the remote memory
accesses and application compute. To investigate Cowbird’s po-
tential impacts on latency, we compare its latency with one-sided
RDMA for reading records of different sizes from remote memory.
As seen in Figure 13, without batching, the latency of Cowbird’s
communication protocol is similar to that of traditional synchro-
nous one-sided RDMA. Cowbird-Spot increases latency slightly
due to 2 additional RTTs (to fetch and update head/tail pointers),
offload engine processing delay, and the polling interval; however,
it also offsets those increases by reducing the time it takes to post
the request and poll the response. The net increase is minimal.

For Cowbird with batching and asynchronous one-sided RDMA,
we continue to use the batching configuration of Section 8.1. As
expected, these approaches increase both median and tail latencies,
but Cowbird can achieve latency that is much lower than asynchro-
nous one-sided RDMA (< 10 μs and < 20 μs for the median and tail,
respectively).

8.4 Cowbird Overhead
Resource usage. Cowbird-P4 does not require any computation
resources on either the compute or memory node. On the network
device, our prototype implementation is optimized to fit into the
switch resource constraints without packet recirculation. Table 5
details its data plane pipeline resource consumption, assuming the
worst case where all ports are utilized for Cowbird-P4. The logic
spans several stages, but the SRAM/TCAM usage within each stage
is minimal, leaving space for concurrent Cowbird-P4 instances and
other switch applications.

For Cowbird-Spot, we limit its resource usage to at most one
CPU core. The prior evaluation results show that this configuration
suffices for all the application threads.

Network bandwidth overhead. The bulk of Cowbird’s network
traffic is from Probes, but as these are configured with the lowest
network priority, their impact on user traffic is minimal [44]. We
note that Phase III packets also do not add overhead, at least when
compared to other RDMA disaggregation solutions. The only extra
traffic is from the periodic garbage collection messages of Phase IV.

1070

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang

 0

 10

 20

 30

 40

1 2 4 8

N
e
tw

o
rk

 B
a
n
d

w
id

th
 (

G
b

p
s)

of Application threads

Cowbird-P4
Cowbird-Spot

w/o Cowbird

Figure 14: Bandwidth of contending TCP flows using 512B
records with Cowbird-P4, with Cowbird-Spot, and without
Cowbird.

PHV SRAM TCAM Stages VLIW instrs. sALU

1085 b 1424 KB 1.28 KB 12 38 11

Table 5: Cowbird data plane resource usage for a 32-port L3
forwarding Tofino switch.

Tomeasure the total network overhead of Cowbird, we introduce
contending applications of TCP transfers on the compute node
where Cowbird runs concurrently. We configure an iperf3 client
with 10 threads on the compute node to continuously send traffic
toward a third server (different from the memory node) with a
25Gbps NIC and measure its bandwidth with and without Cowbird.
To provide an upper bound on Cowbird’s performance impact, we
configure the RDMA packets with higher priority than the user
traffic. Cowbird executes with 8 application threads.

Figure 14 shows the aggregate bandwidth of TCP flows when
running Cowbird in FASTER with 512 B values. The overhead of
Cowbird-Spot is negligible even with 8 application threads. With
Cowbird-P4, TCP bandwidth drops by up to 30% in this worst-
case scenario, which reflects the lack of response batching in the
protocol.

9 RELATEDWORK

Hardware/networking support.Memory disaggregation systems
(include Cowbird) often rely on Remote Direct Memory Access
(RDMA) [10, 18, 28] due to its high performance and the ubiquity
of its support in modern NICs.

Compute Express Link [2] (CXL) has emerged as a potential
alternative due to even lower latencies, lower CPU overheads, and
integration with processor designs. Samsung introduced a proto-
type that uses CXL to expand local host physical memory [33]. More
recently, DirectCXL [16] proposes to use the CXL.mem protocol to
directly connect host CPUs to remote memory to execute load and
store instructions with latencies lower than RDMA. However, at
the time of writing, a far-memory-capable CXL fabric is neither
fully specified nor commercially available. Cowbird can be seen as
a way to achieve some of the benefits of CXL for far memory using
only currently available hardware.

OS/runtime abstractions for disaggregation. A series of recent
work abstracts away the complexities of underlying architectures
by disaggregating the OS or managed runtimes, e.g., LegoOS [35],
Infiniswap [17], and Semeru [40]. While useful for their backward-
compatibility, these systems suffer from the issues in Figure 1 as well

as other performance issues inherent in OS/runtime disaggregation,
e.g., context switching overhead and read/write amplification [32].

Co-designed applications. Many systems, including Cowbird,
instead bypass the OS and expose disaggregated memory directly
in user space with new data structures, programming models, or
remote memory libraries. Aguilera et al. [4] propose a set of data
structures optimized for constructing efficient remote memory-
aware applications. In addition to data structures, AIFM [32] also
modifies the application runtime and introduces remote agents to
further lower the cost of using remote memory. Redy [47] offers a
simple, byte-addressable device abstraction for stranded memory or
spot instances as high-performance caches, and LegoBase [50] and
Sherman [41] optimize databases for disaggregated memory. Most
of the optimizations in these systems minimize remote memory
access latency or the volume of data movement, which is orthogonal
to the goal of Cowbird—making sure applications use their CPUs
to compute, not move data.

Compute offloading. Finally, several existing memory disaggre-
gation systems offload subsets of their computation to improve
performance. For example, Semeru offloads parts of Java GC, AIFM
offloads light-weight data structure operations, and TELEPORT [49]
pushes down memory-intensive operators. Similarly, StRoM [36]
and Clio [19] offload to SmartNICs with FPGAs while MIND [23]
chooses to offload the cache coherence protocolto programmable
switches. RedN [31] modifies the RDMA driver and lifts the existing
RDMA verbs to a set of programming abstractions that are Tur-
ing complete. Hyperloop [21] targets the replicated transactions of
storage systems and offloads the CPU work from the critical path
to the RDMA NICs.

Cowbird is distinct in its attempt to offload even the RDMA
operations to remote compute, as well as its flexibility regarding
the choice of offloading hardware.

10 CONCLUSION
We present Cowbird, a system that frees CPU cycles spent on access-
ing disaggregated memory. By doing so, it allows the compute node
to allocate all CPUs for application workloads. The asynchronous
I/O interface for requesting remote data and zero local CPU cost
in executing the requests, enabled by compute offloading, make
this work unique compared to other disaggregated-memory sys-
tems. The evaluation with a production key-value store shows that
Cowbird-freed CPUs can significantly improve overall application
performance.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We gratefully acknowledge our shepherd Aditya Akella and the
anonymous SIGCOMMreviewers for all of their help and thoughtful
comments. We also thank Phil Bernstein for the valuable feedback
on the early draft of this work. This work was funded in part by
Samsung, Google, and NSF grants CNS-1845749 and CNS-2107147.

REFERENCES
[1] Bluefield smartnic. https://network.nvidia.com/files/doc-2020/pb-bluefield-

smart-nic.pdf, 2022.

1071

https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf

Cowbird: Freeing CPUs to Compute by Offloading the Disaggregation of Memory ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

[2] Compute express link: The breakthrough cpu-to-device interconnect. https:
//www.computeexpresslink.org, 2022.

[3] Intel tofino. https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html, 2022.

[4] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal.
Designing far memory data structures: Think outside the box. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS 2019, Bertinoro, Italy,
May 13-15, 2019, pages 120–126. ACM, 2019.

[5] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-
hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
Can far memory improve job throughput? In Angelos Bilas, Kostas Magoutis,
Evangelos P. Markatos, Dejan Kostic, and Margo I. Seltzer, editors, EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020, pages
14:1–14:16. ACM, 2020.

[6] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,
Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, Marcus
Fontoura, and Ricardo Bianchini. Providing slos for resource-harvesting vms in
cloud platforms. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 735–751. USENIX Association, November 2020.

[7] Alexey Andreyev. Introducing data center fabric, the next-generation facebook
data center network. https://goo.gl/rE8wkL, 2014. Facebook.

[8] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation and the
application. In Amar Phanishayee and Ryan Stutsman, editors, 12th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud 2020, July 13-14, 2020.
USENIX Association, 2020.

[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems, pages 53–64, 2012.

[10] Broadcom. Rdma over converged ethernet (roce). https://
techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-
nic-controllers/bcm957xxx/adapters/RDMA-over-Converged-Ethernet.html,
2022.

[11] Amanda Carbonari and Ivan Beschasnikh. Tolerating faults in disaggregated
datacenters. In Sujata Banerjee, Brad Karp, and Michael Walfish, editors, Pro-
ceedings of the 16th ACM Workshop on Hot Topics in Networks, Palo Alto, CA, USA,
HotNets 2017, November 30 - December 01, 2017, pages 164–170. ACM, 2017.

[12] Adrian Caulfield, Paolo Costa, and Monia Ghobadi. Beyond smartnics: Towards
a fully programmable cloud. In 2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR), pages 1–6. IEEE, 2018.

[13] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154, 2010.

[14] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
Farm: Fast remote memory. In Ratul Mahajan and Ion Stoica, editors, Proceedings
of the 11th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2014, Seattle, WA, USA, April 2-4, 2014, pages 401–414. USENIX Association,
2014.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking:{SmartNICs} in the public cloud. In
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI
18), pages 51–66, 2018.

[16] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. Direct
access, High-Performance memory disaggregation with DirectCXL. In 2022
USENIX Annual Technical Conference (USENIX ATC 22), pages 287–294, Carlsbad,
CA, July 2022. USENIX Association.

[17] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. Efficient memory disaggregation with infiniswap. In Aditya Akella and
Jon Howell, editors, 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages 649–667.
USENIX Association, 2017.

[18] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. RDMA over commodity ethernet at scale. In Marinho P.
Barcellos, Jon Crowcroft, Amin Vahdat, and Sachin Katti, editors, Proceedings
of the ACM SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26, 2016,
pages 202–215. ACM, 2016.

[19] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. Clio:
a hardware-software co-designed disaggregated memory system. In Babak Fal-
safi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch, editors, ASPLOS ’22:
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4
March 2022, pages 417–433. ACM, 2022.

[20] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi, and
Scott Shenker. Network support for resource disaggregation in next-generation
datacenters. In Dave Levine, Sachin Katti, and Dave Oran, editors, Twelfth ACM
Workshop on Hot Topics in Networks, HotNets-XII, College Park, MD, USA, November

21-22, 2013, pages 10:1–10:7. ACM, 2013.
[21] Daehyeok Kim, Amir Saman Memaripour, Anirudh Badam, Yibo Zhu,

Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: group-based nic-offloading to accelerate
replicated transactions in multi-tenant storage systems. In Sergey Gorinsky and
János Tapolcai, editors, Proceedings of the 2018 Conference of the ACM Special In-
terest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary, August
20-25, 2018, pages 297–312. ACM, 2018.

[22] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, Dejan Kostić,
Youngjin Kwon, Simon Peter, and Emmett Witchel. Linefs: Efficient smartnic
offload of a distributed file system with pipeline parallelism. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles, pages 756–771,
2021.

[23] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin Zhong, and
Abhishek Bhattacharjee. MIND: in-network memory management for disaggre-
gated data centers. In Robbert van Renesse and Nickolai Zeldovich, editors, SOSP
’21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021, pages 488–504. ACM, 2021.

[24] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. Disaggregated memory for expan-
sion and sharing in blade servers. In Stephen W. Keckler and Luiz André Barroso,
editors, 36th International Symposium on Computer Architecture (ISCA 2009), June
20-24, 2009, Austin, TX, USA, pages 267–278. ACM, 2009.

[25] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and
Karan Gupta. Offloading distributed applications onto smartnics using ipipe.
In Proceedings of the ACM Special Interest Group on Data Communication, pages
318–333. 2019.

[26] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching remote
memory with leap. In Ada Gavrilovska and Erez Zadok, editors, 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020, pages 843–857.
USENIX Association, 2020.

[27] Microsoft. Faster: Fast persistent recoverable log and key-value store + cache, in
c# and c++. https://microsoft.github.io/FASTER/, 2022.

[28] Nvidia. Nvidia quantum infiniband platform. https://www.nvidia.com/en-us/
networking/products/infiniband/, 2022.

[29] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. Shenango: Achieving high CPU efficiency for latency-sensitive datacenter
workloads. In Jay R. Lorch and Minlan Yu, editors, 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019, pages 361–378. USENIX Association, 2019.

[30] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong Qiao, Zhiguo
Li, Kun Liu, Jie Lu, Jianyuan Lu, et al. Sailfish: Accelerating cloud-scale multi-
tenant multi-service gateways with programmable switches. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, pages 194–206, 2021.

[31] Waleed Reda, Marco Canini, Dejan Kostic, and Simon Peter. RDMA is turing
complete, we just did not know it yet! In Amar Phanishayee and Vyas Sekar, edi-
tors, 19th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2022, Renton, WA, USA, April 4-6, 2022, pages 71–85. USENIX Association,
2022.

[32] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. AIFM:
high-performance, application-integrated far memory. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020, pages 315–332. USENIX Association, 2020.

[33] Samsung. Samsung unveils industry-first memory module incorporating new
cxl interconnect standard. https://semiconductor.samsung.com/newsroom/
news/samsung-unveils-industry-first-memory-module-incorporating-new-
cxl-interconnect-standard/, 2021.

[34] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with In-Network aggregation. In
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21), pages 785–808. USENIX Association, April 2021.

[35] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos: A dis-
seminated, distributed OS for hardware resource disaggregation. In Andrea C.
Arpaci-Dusseau and Geoff Voelker, editors, 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, pages 69–87. USENIX Association, 2018.

[36] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo Alonso.
Strom: smart remote memory. In Angelos Bilas, Kostas Magoutis, Evangelos P.
Markatos, Dejan Kostic, and Margo I. Seltzer, editors, EuroSys ’20: Fifteenth Eu-
roSys Conference 2020, Heraklion, Greece, April 27-30, 2020, pages 29:1–29:16. ACM,
2020.

[37] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. SIGCOMM Comput. Commun.
Rev., 45(4):183–197, aug 2015.

1072

https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://goo.gl/rE8wkL
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/RDMA-over-Converged-Ethernet.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/RDMA-over-Converged-Ethernet.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/RDMA-over-Converged-Ethernet.html
 https://microsoft.github.io/FASTER/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://www.nvidia.com/en-us/networking/products/infiniband/
https://semiconductor.samsung.com/newsroom/news/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard/
https://semiconductor.samsung.com/newsroom/news/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard/
https://semiconductor.samsung.com/newsroom/news/samsung-unveils-industry-first-memory-module-incorporating-new-cxl-interconnect-standard/

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang

[38] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukr-
ishnan, and Jennifer Rexford. Heavy-hitter detection entirely in the data plane.
In Proceedings of the Symposium on SDN Research, pages 164–176, 2017.

[39] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA support for datacenter
applications. In Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 306–324. ACM, 2017.

[40] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Semeru:
A memory-disaggregated managed runtime. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020, Virtual Event, November
4-6, 2020, pages 261–280. USENIX Association, 2020.

[41] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized distributed
b+tree index on disaggregated memory. In Zachary Ives, Angela Bonifati, and
Amr El Abbadi, editors, SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 1033–1048. ACM, 2022.

[42] Nofel Yaseen, John Sonchack, and Vincent Liu. Synchronized network snapshots.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 402–416, 2018.

[43] Liangcheng Yu, John Sonchack, and Vincent Liu. Mantis: Reactive programmable
switches. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 296–309, 2020.

[44] Liangcheng Yu, John Sonchack, and Vincent Liu. OrbWeaver: Using IDLE cycles
in programmable networks for opportunistic coordination. In 19th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 22), pages
1195–1212, Renton, WA, April 2022. USENIX Association.

[45] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. High-
resolution measurement of data center microbursts. In Proceedings of the 2017
Internet Measurement Conference, pages 78–85, 2017.

[46] Qizhen Zhang, Phil Bernstein, Daniel S. Berger, Badrish Chandramouli,
Boon Thao Loo, and Vincent Liu. Compucache: Remote computable caching
using spot vms. In Conference on Innovative Data Systems Research (CIDR 2022),
January 2022.

[47] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, and Badrish Chandramouli.
Redy: Remote dynamic memory cache. Proc. VLDB Endow., 15(4):766–779, 2021.

[48] Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang Chen, Vincent
Liu, and Boon Thau Loo. Understanding the effect of data center resource
disaggregation on production dbmss. Proc. VLDB Endow., 13(9):1568–1581, 2020.

[49] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian
Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. Optimizing data-intensive
systems in disaggregated data centers with TELEPORT. In Zachary Ives, Angela
Bonifati, and Amr El Abbadi, editors, SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 1345–1359.
ACM, 2022.

[50] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Jimmy Yang, Wei Cao, Feifei Li,
Bo Wang, Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. Towards cost-
effective and elastic cloud database deployment via memory disaggregation. Proc.
VLDB Endow., 14(10):1900–1912, 2021.

1073

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory Disaggregation
	2.2 Remote and In-network Computation

	3 Design Overview
	4 The Cowbird Compute Node
	4.1 The Cowbird API
	4.2 Data Organization
	4.3 Client Library Operation

	5 Cowbird-P4 Offload Engine
	5.1 Wire Format
	5.2 Communication Protocol
	5.3 Consistency and Fault Tolerance
	5.4 Handling Multiple Cowbird Instances

	6 Cowbird-Spot Offload Engine
	7 Case Study: The FASTER KV Store
	8 Evaluation
	8.1 Remote Memory Performance
	8.2 Comparison with Other Approaches
	8.3 Cowbird Latency
	8.4 Cowbird Overhead

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

