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Abstract
Datacenters often underutilize expensive AI accelerators
(GPUs, TPUs, etc). A natural solution is disaggregation, where
servers borrow network-attached accelerators on demand.
However, current approaches to disaggregation su!er from
a semantic translation gap: as computation descends the soft-
ware stack, critical application knowledge—like model struc-
ture or execution phases—is lost. This forces an undesir-
able choice between low-level, general-purpose systems that
are semantically-blind and ine"cient, and high-level, single-
workload systems that are e"cient but not general.

We argue that the machine-learning framework layer is
the natural narrow waist for accelerator disaggregation. We
present Genie, a framework-layer architecture centered on a
Semantically-Rich Graph (SRG) that decouples intent capture
from execution. By deferring execution, Genie automatically
builds a semantically-rich compute graph, enabling it to ap-
ply workload-speci#c optimizations and orchestrate a zero-
copy data path for remote execution. Genie demonstrates a
new path toward AI infrastructure that is at once general,
semantically-aware, and e"cient.

CCS Concepts
• Computer systems organization → Distributed archi-
tectures; • Networks → Cloud computing; • Computing
methodologies → Machine learning.
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1 Introduction
The rapid proliferation of AI has driven unprecedented in-
vestment in accelerators—over $150B in 2023 alone [12]—yet
real $eets still report 55–60% average GPU idleness [13]. This
severe underutilization is a consequence of today’s coarse-
grained resource allocation mechanisms and tightly-coupled
server-accelerator architectures, both of which strand ex-
pensive AI accelerators for applications with $uctuating de-
mands or disproportionate resource requirements.
A natural strategy to avoid this wasted capacity is re-

source disaggregation, which decouples AI accelerators into
network-attached, shareable pools [7–9, 14]1. Applications
can then dynamically claim the exact type and count of ac-
celerators for the duration they need them.

However, existing proposals for GPU disaggregation largely
follow patterns from other contexts that are ill-suited for AI
workloads. One approach is to hand explicit control over
remote resources to the applications themselves [18, 20].
These solutions, while e"cient, necessitate extensive hand-
tuning or are tailored for individual workloads and model
architectures. The other common approach is to emulate the
successes of storage disaggregation and operate at low levels
of the stack (PCIe or driver-call replay). These schemes are
more general and backward compatible, but they are blind to
1We focus on hardware disaggregation, where physical accelerators are
the shared resource, as distinct from model disaggregation (e.g., model
parallelism), where a single large model is partitioned across dedicated
accelerators.
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semantic information from the application (e.g., phase bound-
aries, data dependencies, and variances in latency sensitivity),
resulting in poor performance. For instance, a network ap-
pliance that sees only DMA bursts cannot tell a reusable
model weight from a one-o! activation; a driver shim can-
not identify the di!erence between an LLM’s pre#ll phase
(which is compute-bound and should be parallelized as much
as possible) and its decode phase (which is memory-bound
and should be co-located with a remote KV cache).

In this paper, we argue that ML frameworks are the ideal
narrow waist for accelerator disaggregation. ML frameworks
are general enough to support a vast and diverse range of
AI models and hardware. Crucially, they also observe appli-
cation intent: model structure, execution phases (e.g., LLM
pre#ll vs. decode), data dependencies, and residency. These
semantics enable optimizations that are invisible to lower
layers (e.g., co-locating decode with KV cache, pipelining
convolutional stages, or recomputing cheap intermediates
under congestion) without hard-coding per-application logic.
Our thesis is that leveraging these semantics is the key to
making accelerator disaggregation practical and e"cient.
We introduce Genie2, a framework-level disaggregation

architecture that bridges the semantic translation gap while
preserving generality. Genie is built around a Semantically
Rich Graph (SRG), a portable abstraction that cleanly sep-
arates what the application intends from how/where it exe-
cutes. Framework-speci#c frontends (we prototype PyTorch)
capture application intent and construct an SRG, annotating
it with high-level cues like execution phase and data resi-
dency. A pluggable scheduler consumes the SRG to make
intelligent placement and data movement decisions, exploit-
ing semantic cues to reduce data motion and expose paral-
lelism. The scheduler also enables $eet-wide, multi-tenant
optimization when used at datacenter scale by talking to
a global coordinator. Backends execute the plan on remote
accelerators via user-space networking. Genie supports com-
modity clients (RNIC optional) and assumes RNIC-equipped
disaggregated servers; when RDMA and GPUDirect are avail-
able, the server datapath achieves NIC-to-GPU zero-copy.
Because the SRG represents a complete, replayable lineage
of the computation, this architecture also provides a natural
foundation for targeted, lineage-based fault tolerance.

Together, these ideas chart a path where developers write
standard framework code, while a semantics-aware runtime
and scheduler decide what to run, where, and when—turning
disaggregation from a hardware trick into an application-
informed systems capability.

2Freeing accelerators from the lamp of one server, to unleash their potential.
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Figure 1: ML Framework provides general support to
applications and uni!es heterogeneous hardware.

2 The Semantic Translation Gap
To disaggregate, we need to pick a layer of the software
stack to break apart the user from the remote accelerator, by
redirecting local invocations to remote invocations. On one
hand, to hide the overheads of disaggregation, we need to
pick a layer that preserves application semantics, to enable
optimizations that hide latency. But, as we move down the
stack, we lose application semantics—something we call the
semantic translation gap—this calls for picking a high layer
for disaggregation. On the other hand, picking too high a
layer reduces generality, forcing developers to manage data
movement and management explicitly. We give concrete
examples of this trade-o! below.

2.1 A Tour of the Disaggregation Landscape
Modern AI software is multilayered (Fig. 1). We summarize
three candidates for disaggregation points and the semantics
they would lose.
PCIe-level disaggregation (e.g., DxPU [6]) operates at the
hardware interface, forwarding PCIe transactions over the
network. This approach o!ers full application transparency
but is semantically blind. Without application context, it
cannot distinguish a critical-path tensor from an ephemeral
one, nor can it di!erentiate latency-sensitive KV cache access
from a bulk weight transfer in an LLM. This inability to
understand workload intent prevents intelligent scheduling
and data management. Furthermore, the PCIe protocol is
ill-suited for higher-latency networking; for instance, posted
writes can quickly exhaust the limited pool of transaction
tags, severely throttling throughput.
Driver-level disaggregation (e.g., [1, 2, 4, 5, 15]) inter-
cepts GPU driver APIs like CUDA and routes them over
the network. While this approach avoids the need for spe-
cialized hardware for disaggregation, it still misses signi#-
cant context, e.g., every copy looks urgent, and every ker-
nel looks equal. Another issue is that driver APIs such as
CUDA are rapidly changing, which requires constant re-
implementation of the disaggregation layer.

2
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Application-speci!c disaggregation At the highest level
of the stack, it is possible for programmers to e!ectively use
remote accelerators by leveraging deep, workload-speci#c
knowledge to integrate orchestration and control operations
directly into the applications themselves, albeit at the steep
price of generality. This typically manifests in one of two
di!erent approaches.
The #rst is through bespoke systems like DistServe [20]

and Prism [18]. These systems are architecturally tailored
for a speci#c workload class, such as LLM inference or rec-
ommendation models. Prism, for instance, leverages DLRM
semantics to co-design data layout and execution for that
model only. Their deep semantic integration yields high e"-
ciency but cannot be repurposed for other model types.

The second form relies on manual developer optimization
using toolkits like PyTorch RPC [3]. Although the library is
part of the PyTorch framework, e!ectively using it requires
application-speci#c engineering. Developers must manually
refactor code, decide which functions to execute remotely,
manage state, and reason about data locality for their particu-
lar application. As every application is di!erent, this process
can be time-consuming and di"cult to get right.

2.2 Consequences of the Translation Gap
Existing general-purpose disaggregation systems operate
at too low a level, losing application semantics and opti-
mization opportunities. For example, consider an LLM. Code
structure and/or pro#ling results reveal distinct phases with
distinct properties, e.g., pre#ll (compute-bound; paralleliz-
able) and decode (memory-bound; sequential; dependencies
on KV cache). A naive, semantically-blind approach might
treat each GPU operation as independent and identical, for
example, by spreading each request across available GPU re-
sources with a round-robin or least-loaded policy. The result
would be excessive data transfers due to repeated moves of
large KV caches. One could do slightly better by considering
the data movement costs of each placement and schedul-
ing decision, i.e., treating operations as independent but not
necessarily identical. This might save data transfer costs by
ensuring that all subsequent calls are scheduled on the same
GPUs; however, it would still entirely miss the potential
bene#ts of PD disaggregation [11]. In the end, many poten-
tial optimizations are only possible with a broad and deep
understanding of the general application structure.
The above limitations will only become more salient as

modern AI clusters increasingly serve diverse workloads
with fundamentally di!erent characteristics. At a low level,
these workloads can vary in the models they use, the size
of the requested models, their modalities, their SLO expec-
tations (on-demand vs batch), and their reasoning require-
ments. More broadly, AI has found its way into a wide range

of applications, a small selection of which are illustrated in
Table 1. LLMs exhibit sequential dependencies and phase-
based computation, computer vision models have regular
data $ow with layer-wise parallelism, and recommendation
systems combine sparse embedding lookups with dense neu-
ral computation. Generic disaggregation policies cannot op-
timize for this diversity without a semantic understanding
of each workload’s unique characteristics.
The framework layer as the narrow waist. These chal-
lenges and missed opportunities across the stack point to a
single conclusion: the ideal layer for disaggregation must be
both semantically rich and su"ciently general. Themachine-
learning framework is the only layer that satis#es both crite-
ria. Our thesis is to standardize this intent into a Semantically-
Rich Graph (SRG) that decouples capture (what the program
wants to compute) from execution (how/where it runs). SRGs
are dynamic enough to capture runtime shapes and con-
trol $ow, yet structured enough to drive placement and data
movement. Although our prototype targets PyTorch, the SRG
abstraction is not PyTorch-speci#c (JAX/TF would map via
StableHLO/MLIR plus lightweight runtime hooks for phases
and residency).

This choice has three consequences. First, it exposes a min-
imal set of semantics—phases, dependencies, residency, and
modality—that generalize across workload families. Second,
it enables cost-aware policies that reduce data motion, co-
locate stateful phases, and pipeline independent subgraphs.
Third, it creates a portable interface to cluster schedulers and
backends, paving the way for multi-tenant, semantics-aware
placement at datacenter scale.

3 The Genie Platform
Genie’s design is predicated on a clean architectural separa-
tion between an application’s computational intent and its
physical execution. This is enabled by our core abstraction:
the Semantically Rich Graph (SRG), a portable intermediate
representation that serves as a durable “narrow waist.”
The architecture is a three-stage pipeline. Frontends are

responsible for the challenging task of transparently cap-
turing application intent and translating it into a standard-
ized SRG. The Scheduler consumes this SRG, treating it as a
declarative speci#cation of requirements, and produces an
optimized, device-speci#c execution plan. Finally, Backends
are the concrete execution agents that realize this plan on
physical hardware.

This design decouples the problem: ML framework experts
can design frontends, distributed systems experts can design
schedulers, and hardware experts can design backends, all
while interoperating through the common SRG interface.

3
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Workload Computation Pattern Memory Access Key Optimization

LLM Serving Sequential, phased (pre#ll/decode) Streaming KV cache Phase-aware allocation
Computer Vision Layer-parallel, regular Predictable feature maps Pipeline parallelism
Recommendation Sparse + dense mix Hot/cold embeddings Intelligent data tiering
Multi-modal Cross-modal fusion Heterogeneous patterns Modality-aware placement

Table 1: Semantic characteristics of representative AI workloads reveal diverse optimization opportunities inacces-
sible to semantically-blind systems.

3.1 The Semantically Rich Graph
The SRG is a declarative data structure, not an executable pro-
gram. It is a directed acyclic graph where nodes represent op-
erations (from a single kernel to a large fused subgraph) and
edges represent data dependencies. Unlike traditional com-
putation graphs, the SRG is designed to be a self-contained
speci#cation for a scheduler.
Nodes carry a common annotation schema:

• Phase: A tag identifying the execution phase (e.g., llm_pre-
!ll, llm_decode). This is crucial for phase-aware resource
management.

• Residency: Metadata on the intended lifetime and proper-
ties of data products (e.g., persistent_weight, ephemeral_ac-
tivation, stateful_kv_cache). This directly informs caching,
placement, and data movement decisions.

• Modality: Tags identifying the data type being processed
(e.g., vision, text), allowing placement on specialized ac-
celerators.

• Cost hints: Pro#ling- or model-based estimates of com-
putational cost (FLOPs), memory footprint (bytes), and
operational intensity.

Edges carry encodings of the data movement costs:

• Tensor Metadata: Describes the shape, precision, and lay-
out of the data $owing between nodes.

• Producer-Consumer Rates: Speci#es data volume changes
(e.g., for sampling operators), which are critical for net-
work bandwidth reservation.

• Criticality: A tag indicating if this data dependency is
on the critical path of execution, helping the scheduler
prioritize transfers.

This schema is the contract between the frontend and
the scheduler. It provides the scheduler with the necessary
information to make intelligent decisions without needing
to understand the internals of the source ML framework.

3.2 Frontends (Capturing Intent)
The most signi#cant challenge is capturing high-level intent
without burdening the application developer. Our PyTorch
frontend employs a multi-tiered approach to bridge this gap,
acknowledging that full automation is not always possible.

Automated Graph Construction: At the base layer, we
use PyTorch’s __torch_dispatch__mechanism to defer ex-
ecution and build a #ne-grained graph of operations using
LazyTensor proxies. This captures the raw dependency struc-
ture and tensor properties automatically.
Automated Structural Annotation: We then use an FX
pass to traverse the graph and group operations based on
the application’s nn.Module hierarchy. This automatically
reveals structural patterns (e.g., “this sequence of ops belongs
to the AttentionBlock module”).
Semi-Automated Semantic Annotation: High-level se-
mantics like “decode phase” are often implicit. Our fron-
tend provides two mechanisms here. The primary method
uses a library of pattern recognizers that identify common
model idioms (e.g., a recurrent loop with a growing KV
cache is characteristic of LLM decoding). For novel archi-
tectures, developers can provide optional, explicit module-
level hooks (e.g., genie.annotate_phase(self.decoder,
“decode”)). This approach provides a practical path to adop-
tion: most common models work out-of-the-box, while new
ones require minimal, high-level annotations.

This tiered process culminates in the emission of a clean,
portable SRG. While we have prototyped in PyTorch, the
SRG is a viable compilation target for other frameworks. For
example, a JAX frontend could lower its jaxpr representation
to an SRG. Acknowledging the engineering complexity, the
key is that the SRG provides a stable, common target for
such e!orts.

3.3 Scheduler: Semantics-Driven
Optimizations

The scheduler is a pluggable policy engine that translates a
declarative SRG into a concrete execution plan. Its core inter-
face is a pure function: plan = schedule(srg, cluster_state,
policy). It takes an SRG, a representation of the current
hardware availability and network topology, and a policy
module (e.g., minimize_latency and returns an annotated
SRG. This output SRG is augmented with concrete device
assignments for each node and explicit send/receive instruc-
tions for each edge.

Policies implement the system’s optimization logic using a
cost model that evaluates the end-to-end latency of any given
plan. These policies leverage the SRG’s semantic annotations

4
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to apply powerful, context-aware optimizations that are not
hard-coded:
• Stateful Co-location. By identifying the sequential, KV-
cache-dependent nature of the decode phase from the
graph, Genie ensures the cache and the decoder layers
are pinned to the same remote GPU. This eliminates re-
peated, costly transfers of the entire cache state.

• Pipelined CNN inference. For vision workloads, the
graph reveals consecutive convolutional stages. Genie can
automatically fuse these stages and schedule them as a
pipeline across multiple accelerators, e!ectively overlap-
ping communication and computation.

• Dynamic recomputation. By analyzing the graph and
querying network conditions, Genie can make intelligent
trade-o!s. When network contention is high, it can opt
to recompute an inexpensive intermediate tensor on the
remote device instead of waiting to fetch it across the
congested wire.
A pluggable cost model estimates end-to-end latency as a

function of compute, transfers, and queuing. The scheduler
emits an annotated SRG with device bindings, transfer sched-
ules, and caching directives. Developers can supply policy
plugins at three extension points: graph rewrites (prepass),
placement policy, and runtime hint adaptation (e.g., using
measured RTT).

3.4 Execution Backends: High-Performance
Datapaths

The backend translates the scheduler’s static plan into dy-
namic execution. Its interface is: results = execute(anno-
tated_srg).
A critical source of overhead in accelerator disaggrega-

tion is redundant data movement. Genie allocates tensors
in network-ready pinned bu!ers at creation time, avoiding
reactive pinning and extra copies. Remote-sesident objects
(weights, KV caches, etc) are materialized once and refer-
enced by opaque handles.

Genie proactively integrates tensor allocation with a user-
space networking stack (DPDK) from the outset. Speci#-
cally, when an application creates a tensor, Genie intercepts
this operation and directly allocates the tensor in pinned,
network-ready host memory managed by DPDK. This proac-
tive approach completely eliminates the initial copy over-
head associated with reactive pinning (calling pin_memory()
post-hoc).

To achieve a true zero-copy data path between GPUs and
NICs, Genie leverages DPDK’s gpudev abstraction, which
provides a vendor-agnostic interface for GPU memory man-
agement and data transfers. Under the hood, gpudev inte-
grates vendor-speci#c technologies such as NVIDIA GPUDi-
rect RDMA, enabling NICs to directly DMA data into GPU

memory without intermediate CPU involvement. Impor-
tantly, this capability relies on vendor-supported GPU-NIC
integration mechanisms and appropriate OS-level con#g-
urations (e.g., IOMMU settings, PCIe ACS con#gurations).
Clients can be equippedwith commodityNICswithout RDMA
capabilities but still take advantage of zero-copy transfers.

The backend executes kernels, orchestrates scheduled tran-
sfers, and tracks per-node completion and resource usage.

3.5 Lineage-Based Fault Tolerance
Genie provides a lineage-based fault-tolerance model in-
spired by data$ow systems [10, 17, 19]. The SRG is the unit of
lineage: nodes are deterministic operator invocations; edges
are explicit dependencies. Remote resident objects are ref-
erenced by opaque handles with epochs. Failures trigger
selective recomputation guided by the SRG. Upon detecting
a failure, the runtime invalidates a!ected handles, rebinds
to new resources, and replays only the subgraph on the cut
induced by the lost state. Idempotence is guaranteed by scop-
ing side e!ects to handle+epoch and by materializing exter-
nal outputs only after commit points. Lineage spans phases,
enabling recovery of long-running decode loops without
restarting pre#ll.

3.6 Semantics-Aware Global Scheduling
The semantic-rich computation graph constructed by Ge-
nie is not merely a local optimization tool—it is the foun-
dational building block for a broader vision of autonomous,
semantics-aware resource management at datacenter scale.
In this vision, Genie instances act as clients to a global sched-
uler, providing it with semantic graphs as a rich, #rst-class
description of workload requirements.
Armed with this $eet-wide semantic context, the global

scheduler can make resource allocation decisions that are
impossible for systems that are blind to application intent. It
can determine where, when, and how each operation should
execute across thousands of tenants:
• Where (Heterogeneous Placement): The scheduler mo-
ves beyond simple co-location to perform true heteroge-
neous placement. It can analyze the semantic graphs to
identify workload classes, placing all vision-transformer
jobs on memory-bandwidth-optimized GPUs while sched-
uling recommendation models on accelerators with dif-
ferent characteristics, globally optimizing for hardware
a"nity.

• When (Elastic Scaling): Leveraging semantic phase anno-
tations (e.g., pre#ll vs. decode) from the graph, the sched-
uler can dynamically provision and release resources as
a workload’s needs evolve in real-time. It can scale out
accelerators for a burst of parallelizable pre#ll tasks and
scale them back during the sequential decode phase.

5
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• How (Cross-Workload Orchestration): The scheduler
can use semantic metadata to orchestrate execution across
tenants. For example, it could identify two separate user
requests that use the same public LLM and automatically
batch their decode steps together to improve throughput,
or prioritize interactive, latency-sensitive VQA queries
over long-running batch training jobs.

This interactive, semantics-driven negotiation between
Genie and the global scheduler enables unprecedented elas-
ticity and e"ciency. Unlike static, compiler-based approaches,
this dynamic co-adaptation continuously optimizes resource
allocation and execution strategies in response to evolving
workloads, network conditions, and resource availability.
Our current implementation of Genie lays the critical ground-
work for this ambitious vision, demonstrating the feasibility
and performance potential of semantic-driven disaggrega-
tion at scale.

3.7 Limitations and Scope
The SRG model, like all abstractions, has limitations. Highly
dynamic control $ow (data-dependent if branches) requires
the frontend to either conservatively unroll small loops or
insert “re-capture” points where a new SRG is generated mid-
execution. Opaque custom operators (e.g., a user-written
CUDA kernel) are another challenge; the frontend can cap-
ture their I/O signatures but must rely on developer-provided
annotations for their internal semantics and cost. Our current
work focuses on the large class of models where the com-
putational graph is largely static within a given execution
phase.

4 Evaluation
This section answers a key question:Howmuch does semantic
awareness matter when executing a modern LLM across a
disaggregated network? We evaluate four execution modes
that span the design space:
Local (Upper Bound) model and KV-cache reside on the same
A100-80GB GPU as the client.
Semantics-Blind, Naïve client re-uploads the entire 12GB
GPT-J model weights on every remote call. During the decode
phase, this occurs for each generated token, and the KV-
cache is not preserved between steps.
Semantics-Blind, ωKV weights remain remote; each step
ships the delta slice of the KV-cache (↑1.0MB) without com-
pression.
Semantics-Aware KV-cache is pinned on the remote GPU and
referred to by a tiny handle; each round trip moves only the
next token and its resulting logits.

Phase / Mode Latency [s] Net [MB] GPU Util. [%]

Pre#ll
Local (Upper Bound) 0.21 0.0 100.0
Naïve 216 149,258 0.1
ωKV 110 4.31 0.2
Semantics-Aware 111 5.56 0.2

Decode (50 tokens)
Local (Upper Bound) 1.53 0.0 99.1
Naïve 783 95,438 0.3
ωKV 131 52.3 1.5
Semantics-Aware 116 11.3 1.8

Table 2: End-to-end latency, network tra"c, and e#ec-
tive GPU utilization for a 72-token prompt + 50-token
decode. While useful GPU work is virtually identical
across modes, wall-clock time and utilization vary dra-
matically due to data movement and RPC overhead.

Setup. The GPT-J model runs on a single A100-80GB server,
while the CPU-only client connects through a 25Gbps link.
We use PyTorch 2.1 with its o!-the-shelf TensorPipe [16]
RPC transport. No RDMA extensions are enabled, making
our comparison conservative for the semantics-aware design.
Wemeasure end-to-end latency (/usr/bin/time),network
volume (via RPC counters), and e#ective GPU utilization,
calculated as the total kernel time divided by the wall-clock
latency. Metrics are reported separately for the compute-
heavy pre!ll phase (processing a 72-token prompt) and a
50-step autoregressive decode loop.
Results. Table 2 presents the results for generating 50 tokens.
Three clear trends emerge.
Semantic cues slash network tra"c. Blindly re-uploading wei-
ghts overwhelms the network, accounting for 149GB in the
pre#ll phase. For the naïve decode, this process generates a
total of 95GB over 50 steps. By understanding that weights
are immutable and the KV cache should stay near compute,
the Semantics-Aware mode reduces tra"c by over 8,400↓
compared to naïve decode (11MB vs. 95GB) and by over
26,000↓ in the pre#ll phase.
GPU idles without semantic context. The penalty of seman-
tic blindness is most stark when looking at GPU utilization.
While all modes execute a nearly identical amount of use-
ful work (↑1.9 s of total kernel time), their end-to-end GPU
utilization plummets in the remote scenarios. In the Naïve
and ωKV modes, the GPU is idle over 98% of the time, com-
pletely bottlenecked by data transfers. Our Semantics-Aware
approach improves utilization by 6↓ over the Naïve mode,
but the GPU still remains heavily underutilized, highlighting
the performance is now dominated by the overhead of the
RPC transport itself, not data volume.

6
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Decode latency for N tokens [s]

Mode N=50 N=100 N=150 N=200

ωKV 132.0 159.9 181.8 204.3
Semantics-Aware 114.0 118.4 118.5 119.2

Table 3: Decode latency scaling with generation length.

Latency becomes RPC-bound, not data-bound. The remain-
ing performance gap between the Semantics-Aware and lo-
cal modes is almost entirely an artifact of the unoptimized
Python RPC transport, which requires one synchronous
round-trip per token. Replacing this with a zero-copy RDMA
path is orthogonal work (§3.4) that would tighten the gap
but not change the relative ordering of the designs.

Table 3 shows how latency scales with generation length.
The Semantics-Aware mode’s latency is dominated by a #xed
per-token RPC overhead and thus remains nearly constant.
In contrast, the ωKV mode’s latency grows linearly as it
must transfer a larger KV-cache slice with each step. By 200
tokens, the Semantics-Aware design is already ↑1.7↓ faster.
Key takeaways. (1) Semantic awareness eliminates orders of
magnitude in network tra"c and improves GPU utilization
by revealing the true system bottlenecks. (2) With an o!-the-
shelf RPC stack, our Semantics-Aware mode already closes
88% of the latency gap relative to the next-best semantics-
blind approach (ωKV). (3) E!ective accelerator disaggrega-
tion is only practical when the runtime understands high-
level application intent; blind, general-purpose transports
strand expensive GPU resources by wasting bandwidth and
time.

These #ndings motivate Genie: a framework-level, seman-
tically-aware runtime with a zero-copy transport designed
to realize the full potential of accelerator disaggregation.

5 Research Challenges
Realizing the full potential of semantic disaggregation re-
quires addressing new research challenges. We identify the
following fundamental challenges that must be addressed
before framework-layer disaggregation can be considered
truly viable.
Semantics-awaremulti-tenant scheduling at scale.How
canwe e"ciently represent and reason about semantic graphs
at scale?What algorithms can dynamically co-adapt resource
allocation across thousands of concurrent, semantically-rich
workloads? These questions require new scheduling algo-
rithms that leverage semantic graphs as #rst-class inputs.
The semantic boundary: DynamicismandControl Flow.
The SRG’s power relies on capturing application intent. How-
ever, the current SRG model, like most graph-based compila-
tion, excels at static, ahead-of-time (AOT) graphs. This is a
severe limitation.

The frontier of ML is intensely dynamic: data-dependent
control $ow, dynamic shapes, just-in-time (JIT) compilation,
and complex conditional logic (e.g., Mixture of Experts) are
becoming the norm. The core research challenge is: How do
we build an SRG that is both rich enough to optimize and
$uid enough to capture true dynamicism?

A purely static graphwill fail. A purely JIT-based approach
may lack the global view needed for disaggregation. This is a
fundamental trade-o! between expressiveness and tractabil-
ity that sits at the heart of the Genie model.
Trust and veri!ability in semantic disaggregation. Se-
mantic graphs dictate resource usage and sensitive data
movement across networks. Ensuring security, privacy, and
veri#ability becomes paramount. How can we protect propri-
etary model architectures encapsulated in semantic graphs,
ensure data isolation in multi-tenant remote memory, and
develop veri#able computation schemes where clients cryp-
tographically verify remote computations based on semantic
plans? Addressing these challenges opens avenues for "con-
#dential AI disaggregation."
The evolving semantic lexicon: beyond hand-crafted
rules. How can systems like Genie automatically learn or
infer the semantic roles of operations and patterns in novel,
unseen AI architectures (e.g., emerging State Space Mod-
els, Liquid Neural Networks)? Can we develop techniques
for self-evolving semantic vocabularies, perhaps using meta-
learning on computation graphs or program synthesis to gen-
erate new optimization heuristics for disaggregation, moving
beyond manually curated pattern recognizers?

6 Conclusion
We identify the ML framework as the true narrow waist for
this problem—the only layer that is both general-purpose and
semantically-aware. We present Genie, a framework-layer
architecture built upon the core abstraction, the Semantically-
Rich Graph (SRG), cleanly decouples computational intent
from execution. This allows the system to capture high-level
application knowledge, like execution phases and data res-
idency, that is completely opaque to low-level hardware-
centric approaches.

Our evaluation demonstrates that this semantic awareness
is not an incremental optimization; it is the key to viability.
By transforming application intent into an e"cient, zero-
copy data path, Genie converts the disaggregation problem
from fundamentally network-bound to compute-bound, elim-
inating the orders-of-magnitude in wasteful data transfers
that render low-level disaggregation impractical.
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