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Abstract

Modern LLM serving workloads are increasingly heterogeneous, in-
volving a growing portfolio of models with vastly different compute
and memory requirements. Existing approaches to model serving—
ranging from static GPU partitioning to dynamic reconfiguration
and GPU multiplexing—fail to effectively support heterogeneity.

In this paper, we introduce ParaFlex, a new system for serving
heterogeneous LLMs that breaks from the conventional assumption
of a single shared pipeline structure across models. Rather than
aligning the layout of model pipelines, ParaFlex aligns the execu-
tion times of their stages, allowing models of different sizes and
parallelism configurations to coexist efficiently on shared GPUs.
Our design achieves high GPU utilization, high throughput, and
low tail latency under bursty, mixed-model workloads.
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1 Introduction

As demand for Large Language Models (LLMs) grows, so too does
the cost of serving them in production. LLM inference is compute-
and memory-intensive, often requiring multiple high-end GPUs
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per request arranged in a parallelized ‘execution group. At the
same time, organizations and cloud providers must now support a
growing portfolio of models—ranging from lightweight, low-cost
variants to massive foundation models—to satisfy different func-
tionality, latency, cost, and performance requirements.

In this paper, we argue that future LLM serving systems must
treat heterogeneity as a first-class concern. The industry trend
toward multi-model deployment is clear: LLM API providers already
provide standard APIs around various heterogeneous LLMs, e.g.,
Azure’s offering spans from GPT-40 to GPT-40-mini [19], and AWS
supports Llama 3.1 405B as well as Llama 3.2 1B [18]. GPT-5’s
architecture now bakes in automated routing between differently
sized models [4].

Today, strategies for hosting multiple models can broadly be
classified into three approaches. By far, the simplest method is to
take the set of available GPUs and partition them so that each model
is hosted on its own dedicated set of GPUs. However, the burstiness
of today’s inference workloads means that any static provisioning
is necessarily inefficient, leading to the underutilization of costly
hardware resources [7, 14].

A second approach is to continue to partition the cluster into dis-
tinct execution groups but to remove and recreate execution groups
for models as demand changes over time [9, 28]. This approach af-
fords some flexibility in resource allocation; however, reinitializing
an execution engine involves multiple operations that can take tens
of seconds in total [9]. Under dynamic and bursty workloads, this
approach can incur a big context switch overhead. Additional com-
plexity occurs if the old and new execution groups need different
numbers of GPUs, as they may be used to host different-sized mod-
els, necessitating complex coordination across execution groups.

A recent line of work explores a promising alternative: multiplex-
ing GPUs among multiple models, with either all available models
sharing all available GPUs in a single execution group or with some
degree of partitioning (i.e., n execution groups, with all models and
GPUs cleanly divided among the n groups) [7, 14, 29]. Multiplexing
GPUs improves utilization, as it enables a single model’s bursts to
leverage a larger pool of resources while other models are idle.

Unfortunately, existing multiplexed LLM serving frameworks
all assume models are identical or similarly sized—if they allow
multi-model serving at all. For instance, these systems all enforce
a single shared pipeline structure and parallelism configuration.
To see why this might be problematic, consider a case where an
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API provider hosts two LLMs: one small and one large. Assume the
provider wants to split the small model’s layers into a small number
of pipeline stages, p. The only way to share those resources with
the large model is to stuff the large model into the same number of
stages on the same set of GPUs.

In the resulting configuration, the large model will inevitably
occupy the majority of each GPU’s computation and memory re-
sources. Most likely, it will either exceed the available GPU memory
capacity or leave an inordinately small amount of space for KV
cache. Going the other direction and aligning the small model’s
GPU-level footprint to that of the large model results in parallelism
configurations with a very small amount of computation per GPU
and, thus, large overheads (as a fraction of total execution time).
Regardless of the alignment strategy, the small model suffers from
Head-of-Line (HoL) blocking when its requests are delayed behind
those of the large model. A naive solution is to preempt the large
model; however, this can lead to starvation, as the small model’s
autoregressive decoding may monopolize resources and prevent
the large model from making progress.

In this paper, we present a novel strategy for sharding and placing
heterogeneous models on shared GPUs that avoids the above effects.
The key design principle is that, rather than forcing entire models
to align their GPU-level footprints, we instead focus on aligning the
approximate execution times of their pipeline stages. In the above
example, this would mean splitting the large model into p’ > p
stages, such that all stage execution times and memory footprints
are approximately equal. Doing so eliminates HoL blocking and
balances memory and computation usage among models.

While conceptually simple, breaking the requirement of a sin-
gle shared pipeline structure and supporting heterogeneous multi-
model serving requires fundamental changes to current systems’ ex-
ecution models and a rethinking of every step in the model-serving
workflow. To that end, we present ParaFlex, the first system to allow
for truly flexible model sharding and GPU multiplexing. ParaFlex is
built around the abstraction of autonomous execution engines that
can host stages of any model (regardless of whether their paral-
lelism configurations align) and have full autonomy to schedule,
delay, and swap requests of those models.

Building ParaFlex required overcoming several challenges: How
do we enable autonomous engine execution? How do we support
efficient coordination between engines? How do we place LLMs
with different GPU-level footprints on a shared set of GPUs? How
do we schedule, dispatch, and manage those heterogeneous models?

ParaFlex achieves flexibility by implementing stage-level buffers
and a decentralized, non-blocking tensor forwarding channel be-
tween engines. It partitions the models into stages using their exe-
cution time and places them in a ring to ease coordination issues, all
while balancing usable KV cache size on each GPU. Finally, when
scheduling requests and managing KV cache occupancy, it lever-
ages a multi-model batching-aware strategy that executes/holds
requests to minimize latency while maximizing throughput, fair-
ness, and compute efficiency. In our evaluation, ParaFlex consis-
tently outperforms prior systems across a range of workloads and
model configurations. It reduces median latency by up to 63% and
increases throughput by up to 4.7x compared to tensor-parallel
multiplexing. Compared to shared pipeline-parallel systems, it im-
proves throughput by up to 1.6X and avoids HoL-induced latency
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coupling across models. Our contributions include:

e We propose a novel strategy for sharding and placing heteroge-
neous LLMs centered around the alignment of pipeline-parallel
stage lengths.

e We design a novel LLM serving architecture built on autonomous
execution engines that enables the flexibility necessary for the
above strategy.

e We introduce a set of runtime policies—scheduling, dispatch, KV
cache management—that complement the above and optimize
specifically for heterogeneous serving.

e We implement and evaluate ParaFlex on both a hardware testbed
and cluster-scale simulator, demonstrating 1.6x throughput over
state-of-the-art systems AlpaServe/MuxServe, while maintain-
ing comparable median latency.

2 Background

At a high level, today’s LLMs consist of a stack of transformer
blocks [26], each containing attention heads and feedforward com-
ponents. An input layer takes in a tokenized input sequence, while
an output layer turns the output from the last block into a proba-
bility distribution and samples the next output token from it.

Inference has two phases: prefill that examines all prompt to-
kens to generate the first output token, compute-intensive, and
decode that autoregressively generates remaining tokens. Decode
time dominates end-to-end latency. An optimization is to store and
reuse the model’s activations from the prefill and previous token
generation steps using a data structure called a KV cache. With this
cache, each step in the decode phase only needs to compute the KV
cache for the last generated token. For the remaining decode work,
systems rely heavily on batching to amortize the cost of loading
the model weight and increase compute utilization. The amount
of GPU memory remaining after model weights determines the
KV cache capacity and, thus, is a major bottleneck to batching and
inference throughput [12].

2.1 Today’s Multi-LLM Workloads

While the LLM era started with a handful of organizations each
training their own monolithic ‘foundation model, today’s LLM API
providers typically need to host many models of different sizes to
satisfy different performance and functionality requirements.

For example, most LLM API providers supply a range of model
offerings of different sizes and generations (e.g., OpenAl currently
serves from GPT-3.5 Turbo to GPT-4.1, 4.1 mini, and 4.1 nano, with
GPT-5 incorporating automated routing between legacy models
and newer ones [4]).

Real-world workloads are long-tailed across all dimensions. Model
demand is skewed—few popular models handle most requests.
OpenRouter data ! (collected on March-31-2025) [20] shows model
popularity follows a Zipf distribution s = 1.01.

Within a single model, the arrival pattern of requests and their
request/response lengths also follow long-tailed distributions. For
example, the Azure ChatGPT conversation trace [24] exhibits a
request inter-arrival time that follows a fairly bursty log-normal
distribution with shape parameter s = 2.24. Looking at the token

!OpenRouter is a model aggregator that provides a unified interface for 300+ models
across 50+ providers, handling ~5.6 trillion tokens per month.
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Figure 1: Five requests arrive sequentially, each request has one prefill and one decode iteration. The resource partition approach
(top) leaves GPU idle. The shared pipeline approach (middle) causes HoL blocking and inflated latencies for small models.
ParaFlex’s approach (bottom) achieves good balance between latency and resource utilization.

length of the same traces, we find that in terms of response length—
typically the dominant factor in latency—90pct have 59 tokens on
average, while the remaining 10pct have 478; request length follows
a similar distribution.

2.2 Distributing LLM Inference

Data parallelism simply replicates model instances. However, model
size and memory capacity limits often require model parallelism.

Intra-layer parallelism. Intra-layer parallelism encompasses tech-
niques like tensor parallelism (which splits transformer blocks sym-
metrically among multiple GPUs and has each GPU working on the
same block simultaneously), as well as expert parallelism (which
distributes the experts of an MoE model across GPUs), among oth-
ers. These approaches improve the latency and per-GPU memory
footprint of the model but involve costly collective communication
to distribute and aggregate results, limiting their maximum scalabil-
ity [17]. For instance, tensor parallelism is typically constrained to
the extent of the scale-up GPU interconnect (e.g., NVLink) within
a single server [8, 15].

Inter-layer parallelism. Inter-layer, or pipeline-parallel execu-
tion, divides the model across multiple stages, each containing a
consecutive set of transformer blocks [2, 5]. Here, a sequence of
pipeline stages processes incoming requests (i.e., for prefill, decode,
or a chunked prefill), with each stage handling a single request at a
time but different stages potentially executing in parallel.

The communication overhead of pipeline parallelism is relatively
low, making it suitable for cross-machine GPUs where the band-
width is lower than intra-node; for large models, it can achieve
almost linear scalability [31]. Because the performance is less con-
strained by hardware and the configuration is more flexible, the
optimal pipeline parallelism degree depends on the model and
workloads involved [14, 30]. In fact, prior work [7, 14] showed that
parallelizing a single model beyond its own resource demands can
facilitate resource sharing and improve the utilization. The choice
afforded by pipeline parallelism is the primary challenge tackled
by ParaFlex’s design; we leave an exploration of multiplex hetero-
geneous serving for other parallelism methods to future work.

= Multiplexing =——Resource partition
1.0 I |
0.5 A |

0.0 I.

0 25 50 75 100
Utilization %

Figure 2: Partitioned model placement has lower GPU uti-
lization than multiplexing (request rate=2).

2.3 Multiplexing Heterogeneous LLMs

While parallelism is relatively well understood in the context of
single-model serving, applying it to multiplexed model serving is
challenging, especially when the multiplexed models are hetero-
geneous. In particular, the straightforward extension of the above
parallelism methods means that current systems force multiplexed
models to precisely align their pipeline stage counts and placements
so that they can treat all requests/stages of different models as if
they were all from a single model.

Consider a small and large model on four GPUs with pipeline
parallelism (illustrated Figure 1). Full partitioning causes underuti-
lization under bursty workloads, while forced sharing creates HoL
blocking and latency inflation.

HoL blocking effects can potentially be incurred during prefill
and in every decode iteration.

We can quantify these costs empirically. Specifically, we deploy
a large model (CodeLlama-34b) alongside two small models (Phi-2)
on four GPUs, using the experimental methodology and realistic
workload of §8.1. The resource partitioning approach assigns one
GPU to each Phi-2 model and two GPUs to CodeLlama-34b with
two pipeline stages. The multiplexing approach shards all mod-
els into four pipeline stages deployed to each of the four GPUs.
Figure 2 shows the limits of partitioning in fully utilizing the clus-
ter. Figure 3 shows that, as load increases, multiplexing achieves
higher throughput but at the cost of median latency (tail latency is
impacted primarily by the peak throughput of the system).

While hybrid solutions (that combine partitioning and sharing)
are feasible, in the end, sacrifices inevitably need to be made in the
service of model parallelism alignment.
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Figure 3: As the load increases, fully multiplexing has higher
median latency and throughput than resource partitioning.
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Figure 4: The system architecture of ParaFlex. As an exam-
ple, we show four execution engines (top to bottom) and the
placement for four LLMs, as annotated by arrows indicating
the flow of pipeline parallelism. The LLMs are sharded into 4,
2,2, and 2 stages (left to right), with the blue model replicated
once as striped blue.

3 Design Overview

Multiplexed LLM serving requires rethinking inter-layer paral-
lelism. Rather than forcing models to align pipeline configurations
or eschewing multiplexing benefits, ParaFlex equalizes execution
times and resource requirements across stages.

Our thesis is that doing so presents outsized benefits to efficiency,
utilization, and thus, throughput and latency.

System architecture. Figure 4 illustrates the overall architecture
of ParaFlex, encompassing four types of components:

(1) A placement planner that shards, replicates, and places LLMs
onto execution engines based on workload distributions.

(2) A central gateway routing requests and streaming responses.

(3) A collection of execution engines managing per-stage execution
and inter-stage communication.

(4) A set of workers per-GPU executing model stage.

ParaFlex’s support for unaligned pipelines allows the planner
to (1) partition LLMs into approximately evenly sized stages, i.e.,
smaller models into fewer stages and larger models into more stages,
and (2) place the resulting stages across execution engines in a way
that balances both expected load and GPU memory utilization.

During execution, requests flow through the system much like
they would flow through a microservice workflow. New requests
are forwarded to the execution engine responsible for the target
instance’s first stage. Each execution engine contains a local sched-
uler that determines the next model stage to execute based on the
queued requests. The scheduler can also manage which KV cache
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to swap in or out and opportunistically batch requests.

The engine submits the scheduled task to the local workers for
stage execution. Once the workers finish executing, the engine
sends the intermediate tensor and metadata to the model’s down-
stream execution engine asynchronously. The send and receive
kernels execute concurrently to the actual stage executions.

The benefits of flexibility and independence. Additional model
configuration flexibility and execution engine independence enable
a markedly broader set of policies for everything from sharding
and placement to scheduling and batching. ParaFlex, exercising this
flexibility judiciously, addresses the HoL problem while maintaining
the multiplexing effectiveness, achieving a better resource sharing
and interference tradeoff.

4 The ParaFlex Planner

We begin with a description of how ParaFlex balances per-stage
LLM execution time through partitioning and placement before cov-
ering how it enables and uses that placement in subsequent sections
(§6 and §5). This planning phase occurs once at cluster-initialization
time, but in principle, it can be combined with model-swapping to
reconfigure for longer-term shifts in workload distribution.

4.1 Per-Model Sharding

ParaFlex targets mainstream production LLMs with a uniform layer
structure, such as decoder-only models, and assumes uniform intra-
layer parallelism across all execution engines, as described in §2.2.
Specifically, we expect users to continue to use existing methods of
sharding within layers, e.g., setting TP size based on the connec-
tivity of the scale-up interconnect. Note that this assumption of
uniform intra-layer parallelism is not fundamental; it is made for
implementation simplicity and is orthogonal to the core problem.

ParaFlex instead focuses on inter-layer sharding, where, as men-
tioned in §3, its goal is to align the execution time of the final parti-
tioned stages. To that end, ParaFlex includes a Ts = target stage size
parameter that defines the approximate quantum into which mod-
els should be split. By default, T is equal to the execution time
of the smallest model (accounting for intra-layer parallelism), but
multiples or sub-multiples are also allowed (e.g., X2, +2, +4, etc.).
Lower T trades off per-stage overhead for multiplexing efficiency.
The sweet spot depends on the hardware setup and workload. As a
rule of thumb, operators can tune T by profiling all models with a
set of T and choose the lowest T that satisfies SLOs.

A model’s total number of stages, S, is calculated by dividing
the model’s execution time by T; and rounding to the nearest in-
teger. The model’s L layers are then divided as evenly as possible
among the S stages by assigning |_I§J to each stage and allocat-
ing any remaining layers one at a time, beginning from the first
stage and moving forward. This is based on the observation that
per-token latency remains largely constant across typical context
lengths observed in existing traces [2]. For extremely long, outlier
context lengths, ParaFlex follows the common industry practice of
dispatching these requests to separate, dedicated pools [3].
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Figure 5: Replication and placement procedure for 1 large
model and 2 small models with workload ratio of 1:2.5:2.2.

4.2 Replication and Placement

Once the models are sharded into similarly sized stages, ParaFlex
needs to decide how to replicate and place those models. We formal-
ize the joint replication/placement problem as an optimization that
extends classical DRF by incorporating discrete placement decisions
and joint co-optimization of replication, placement, and fairness.

Sets and parameters.

M ={1,..., Np}: set of models

& ={1,..., N, }: set of execution engines

s; € Z*: number of pipeline stages for model i

R; € R*: workload ratio (normalized arrival rate) for model i,
where Y;e mRi =1

M € R*: total memory capacity per engine (assumed uniform)
w; € R™: total weight size of model i

x € R*: minimum KV cache size per stage

Decision variables.

e r; € Z": number of replicas for model i

e pij € {1,...,Ne — s; + 1}: starting engine ID for replica j of
model i, j € {1,...,ri}

Derived quantities from placement.

e Engine assignment: Stage k of replica j of model i is placed on
engine e; j . = pi j + k — 1, where stages are placed sequentially
on consecutive engines in ascending order

e Weight per stage: w;; = w;/s; (approximately, due to even

sharding)
e Available shared KV capacity on engine e:
Co=M= > wi (1)
i,jk:
e,-,jykze

e Givena placement (74, p; j), KV allocations KV-alloc; ; i are com-
puted via DREF, treating each engine’s available KV capacity C,
as a distinct resource type. We define each model’s dominant
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share as its minimum per-stage share:
KV-alloc; j x

= min 2

Y jellerike{lousiy  Cepp @
Optimization objective and constraints.

max ®"(r;, pi, ) €)

(rispij
where ®*(r;, pi j) = min;e pq ¢; is the minimum dominant share
after applying DRF on the given placement.

e Non-overlapping replicas:

lpij—pijlzsi VieMj#j “)
o Memory feasibility:
Z wix <M Vee& ©)
i,j.k:
€ jk=¢€

o Sufficient per-stage KV cache:
KV-alloc; jr >x Vie M,je{l,....,rilke{l,....s;} (6)
o Resource-demand proportionality:
i S R; -si
ZireMTir Sy ~ DiremRir - siv

Vie M @)

Note the formulation assumes the average arrival rate of each model
is known in advance, either from historical estimation or a manual
forecast. If the arrival rate changes over time, our algorithm can also
be extended to adapt the existing placement plan by incrementally
adding or removing model instances, leveraging its iterative nature.
The affected execution engines can then reload the corresponding
model stage weights as needed.

Algorithm overview. Given the optimization problem, ParaFlex
employs a unified algorithm for both placement and replication
decisions, called iteratively.

The algorithm contains two components: a replication planner
and a placement optimizer. In each step, the replication planner
iteratively updates the current replication plan with an additional
replica of a chosen model. The placement optimizer then takes this
updated replication plan and optimizes its placement across the
available execution engines. As illustrated in Figure 5, by iteratively
calling two components, models are incrementally replicated and
placed until either the replication planner or placement optimizer
violates constraints. The complexity of this algorithm is O(N?,-N2),
where Ny, is the number of models and N, is the number of engines.

Replication planner (Algorithm 1). The replication planner iter-
atively adds model replicas while ensuring that allocated resources
align proportionally with demand among models. We quantify a
model’s relative demand using a resource demand ratio, calculated
by multiplying a model’s normalized arrival rate by its relative size.
This is the target resource ratio for the replication planner.
Conversely, as the placement optimizer §4.2 allocates an equal
share of resources to each stage, the actual allocated resource ratio
is determined by the number of replicas multiplied by each model’s
PP size. ParaFlex’s goal is to provision resources for the models
in proportion to this resource demand ratio. In each iteration, the
replication planner minimizes the difference between the allocated
and target resource demand ratios by duplicating the model with
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the least relative resources. The algorithm terminates when the
chosen model runs out of available engines.

Placement optimizer (Algorithm 2). In the same step, the place-
ment optimizer receives the new replication plan and generates an
optimized placement. Traditional distributed systems often rely on
random placement. In contrast, we optimize placement based on
two design principles:

P1 Keep model execution flowing in the same direction.
P2 Focus on maximizing the total usable KV cache share while
enforcing fairness.

(P1) Maintaining pipeline directionality between models: If any
two models have overlapping execution engines, this principle
requires that the models’ overlapping parts should follow the same
engine execution order. This heuristic borrows from classic work on
flow/jobshop scheduling that has shown that same-order placement
of sequential computation graphs has better latency than purely
random placement, regardless of the scheduling algorithm [23].

Our benchmarks showed similar results for execution time and
memory use. Intuitively, one iteration’s pipelined execution acts like
a request moving through multiple engines. Under high contention,
random placement causes collisions and delays, while same-order
placement limits collisions to request ingress.

(P2) Maximizing fair share of the KV Cache: ParaFlex’s other ob-
jective is to maximize total usable KV cache share while ensuring
fairness among models. Because KV cache capacity is a major bot-
tleneck of LLM serving throughput [12], it is critical to ensure a fair
and efficient allocation of KV caches among all deployed models
across all execution engines.

The placement algorithm leverages dominant resource fairness
(DRF) [10] as a primitive in a non-traditional way. It also generalizes
DRF by incorporating memory fungibility across engines as an
additional dimension for optimization.

DREF is typically applied to heterogeneous resource allocation,
e.g., allocating CPUs and memories. However, we can apply DRF
if every engine’s KV cache capacity is treated as unique types of
resources. Assume the placement of model stages on execution
engines is known, and all models have infinite demand. Because of
the even inter-layer parallelism sharding of ParaFlex, the KV cache
demand remains balanced across all resident stages, making all
resident engines’ cache space the dominant resource. Note that this
fixed KV cache share is used only conceptually for offline planning;
ParaFlex’s KV allocation at runtime is dynamic and flexible.

The DRF takes a placement plan as input to determine each
model’s estimated fair share. Intuitively, the fair share is both a
measure of the fairness of the model as well as the relative balance
of post-weight KV cache capacity, with more even allocations better
on both axes (see Figure 6 for an example). Specifically, we define
the target metric as the minimum stage-wise KV cache share across
all models based on their memory share across all engines. We
enumerate all possible placement plans and choose the placement
that has the highest target metric.

Placement workflow: Model replicas are placed incrementally
in length order, beginning with the longest. For each replica, we
enumerate all possible engine placement options and choose the
one that maximizes the target metric under DRF policy. In the case
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Figure 6: Different placements lead to different KV cache
share by DRF; some placements are better than others.

Algorithm 1 Choose next model for replication

Input:
N: total number of engines to place
s = (51,52, ..., Sn ): number of stages for each model
r =(r1,r2, ..., rn): current number of replicas of each model
R =(Ry, Ry, ..., Ry ): workload ratio of each model
Output: i: model chosen to be replicated
U « {i|lr; =0}
R — (Rys1, Rosy, ..., Rnsn)
if [U| > 0 then
‘ return arg max,, ¢y Rm
P (ris1,r282, ... Tnsn)
1 2 n
a < min 7 R
i — argmax;e (1] {Rilfi = a}
if rjs; > N then
| return-1
return i

> unallocated models

> target resource ratio
> allocated most resource heavy model first

> actual resource ratio
> actual:target relative resource ratio

> least relative resource ratio

> abort when exceed total engines

Algorithm 2 Placement algorithm

Input:

N: total number of engines to place

M: total memory capacity per engine

w = (wy, Wy, ..., Wp ): model weight size of each model

s =(s1,52, ..., Sp y: number of stages for each model

R =(Ry,Ry, ..., Ry ): workload ratio of each model

k: minimum KV cache size per stage per replica

Output: p = (P11, 1,2, ---» Pn,m ): starting engine IDs for each model and replica

re—(1,1,..) > number of replicas of each model
while true do
pe—(-1-1,..) > -1 means placement still unknown

for each model i in descending order of number of stages do
for each replica j do

e« —1 > track starting engine
me— —1 > track minimum per-stage KV allocation among all models
for each engine k do > enumerate all possible engines
| pi je—k

| | | »>DRF_on_KV returns stagewise KV allocation for each model by DRF algorithm
after deducting the model weight size

‘ drf_mem_min_alloc <= min(DRF_on_KV(p, w))
‘ if drf_mem_min_alloc > m then

‘ ‘ m « drf_mem_min_alloc

‘ ‘ e—k

if drf mem_min_alloc < ¢ then

> update when improves

> exceed threshold

‘ return p’ > return last iteration placement
pij e
i « choose_model(s, 7, R) > Algorithm 1
if i = —1 then
‘ return p
ri—ri+1
pe=p

of ties, we choose the one with the lowest first-stage engine ID.
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Figure 7: Request scheduling state diagram.
5 Request Dispatch and Scheduling

The central gateway load balances by dispatching incoming re-
quests to the replica with the fewest outstanding requests. Once
dispatched, each stage decides locally what to execute next.

Request processing state diagram (Figure 7). In contrast to
single-model systems where simple scheduling policies like ‘prefill
first’ are sufficient for maintaining high compute efficiency, Para-
Flex needs to be more careful with which requests it chooses to start
processing and when. To that end, ParaFlex’s execution engines
bucket requests into seven possible states based on its current status
within the stage:

o Waiting prefill: the request is ready to execute the stage of its

current prefill iteration on that engine

Waiting decode: the request is ready to execute the stage of its

current decode iteration on that engine

Swapped decode: same as the waiting decode state, but its KV

cache has been swapped out.

Blocked: the request has finished executing its local stage and is

waiting for the upstream stage’s output.

Swapped blocked: same as the blocked state, but its KV cache has

been swapped out.

o Finished: the request has finished generating its last token, and
its KV cache is freed.

Swapping policy. Vanilla vLLM has two options when the KV
cache runs out of memory: recompute or swap to host memory. In
line with the key design principles of the system, ParaFlex extends
this to distributed execution by allowing each engine to indepen-
dently determine when to swap in and out the KV cache between
GPU and host memory. ParaFlex disables recomputation and pur-
posely avoids coordinated global caching decisions as these incur
inefficient synchronization and, depending on the policies, may
trigger preemptive swapping or thrashing for other stages.

The swapping policy tries to keep the fair allocation of KV cache
among all running models on the engine by picking the model stages
with the largest KV cache occupancy when eviction is necessary.
Within that model stage’s requests, it prioritizes swapping out
blocked requests over waiting decode requests and newer requests
over old requests.

Engine-local scheduling policy. Engine schedulers first try to
schedule max-sized decode batches, followed by prefill requests. If
neither exists or is schedulable (e.g., due to KV cache limitations),
ParaFlex will proceed to schedule an undersized decode batch.

In all three cases, the scheduler will try to schedule requests
in ascending order of arrival time. It will try to either continu-
ously batch requests if the engine is the first stage of the model or
otherwise schedule request batches as batched by the first engine.
If a request/batch cannot be allocated with enough KV cache, it
will evict victims by swapping, starting from the models with the
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highest KV cache allocation.

6 Autonomous Execution Engine Design

ParaFlex’s distributed architecture is composed of multiple indepen-
dent execution engines. Unlike existing pipeline implementations
that couple the engine to a single pipeline [2], ParaFlex enables
model-specific pipelines composed from multiple engines.

6.1 Execution Engine Architecture

ParaFlex’s execution engine is built on top of the vLLM [12] single-
model serving system and inherits much of its per-stage execution
procedures. Like in vLLM, ParaFlex execution engines manage
metadata for request scheduling and oversee the KV cache. For the
latter, the engines are responsible for tracking per-request block
usage, identifying available memory, and dynamically managing
GPU-CPU KV cache swapping. Meanwhile, one or more workers
handle the actual model execution and memory management on
each GPU through PyTorch or customized CUDA kernels.

During initialization, workers preallocate the KV cache, which
is then split into fixed-size blocks that contain a sequential set of
KV vector entries. Additional kernels facilitate operations such
as block swapping and copying. ParaFlex operates on different
token sizes per block by extending the original PagedAttention
kernel [12]. Workers within an execution engine communicate
via GPU-based process groups, e.g., AllReduce for tensor parallel
intra-layer operations.

6.2 Distributed Multi-model Cache
Management

A key challenge is enabling KV cache management across dis-
tributed engines and multiple models. Single-model KV cache man-
agement is a relatively straightforward affair—every token gener-
ated by the system takes a fixed amount of KV cache per transformer
layer, and every layer shares the same memory management state.
In distributed, multi-model KV cache management, the system must
balance cache efficiency and overhead for models of varying sizes,
and engines must be able to manage KV cache for their own stages.

Uniform KV cache block. While, in principle, different models
may have different ideal cache block sizes, ParaFlex allocates a sin-
gle physical KV cache partition per worker with a uniform physical
block size across the entire cache—regardless of the model, the
cache manager will assign additional memory to requests at that
block granularity.

Block sizing is fundamentally a tradeoff between having a large
enough block size to support GPU parallelism and keeping the size
small enough not to waste memory [12].

There are a couple of reasons for this choice of uniformity. First,
a uniform block size enhances the sharing of blocks among dif-
ferent models. Second, we note that the requirement of a large
enough block size affects all models equally and in a similar fash-
ion, whereas over-provisioned block sizes only affect extremely
small models or those with short overall sequence lengths, implying
that, given the choice, prioritizing a large enough block size will
benefit the greatest number of models. Finally, ParaFlex’s sharding
strategy prevents pathological cases as it tries to balance stage sizes
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across models. In practice, we can sweep the parameter space to
find the optimal global block size for a given configuration. Op-
timizations like Jenga[29] are complementary. To accommodate
different numbers of tokens in different blocks (e.g., based on each
model’s attention head size), the blocks are logically reshaped using
torch.Tensor.view and supplied to the unmodified PagedAtten-
tion CUDA kernel [12]. No extra overhead is added to the GPU
execution.

Multi-engine coordination. A single request’s KV cache is dis-
tributed across multiple execution engines during execution. For
each request, each execution engine maintains a local block table
for the deployed stage. During the prefill phase, the request meta-
data is forwarded from upstream stages one after another; the block
table is created based on the input tokens in the metadata. During
decode, the last stage appends the newly generated token to the
request metadata, and the new token update is then propagated
into all subsequent engines, after which new blocks are allocated
on each engine. If there is not enough KV cache space, engines
swap in/out blocks locally between GPU/CPU memory.

When the request’s last token is generated, the last stage in-
forms other engines to free the KV cache blocks via a sequence
of remote procedure calls. Similarly, the last stage can initiate KV
cache recompute as well.

6.3 Cross-Engine Communication

For each model instance, we establish unique process groups among
the workers where the model is deployed. These groups facilitate
communication in distributed multi-GPU serving. In inter-layer
parallelism, the stage engine must transfer intermediary data to
the subsequent engine, including tensors and request metadata.
This involves both engines calling send() and receive(), with each
knowing which engine to connect with.

To that end, we note that ParaFlex’s placement strategy (de-
scribed in §4.2) never places two stages of the same model on the
same execution engine. While allowing more flexibility might open
further classes of sharding/scheduling algorithms, it may also create
coordination complexities or even possible deadlocks under certain
GPU resource management schemes. Thus, for each model on each
ParaFlex execution engine, there is a single predecessor and suc-
cessor (though an execution engine as a whole may communicate
with many other engines).

For a given transfer, the upstream execution engine coordinates
the data transfer in two phases to transfer metadata and intermedi-
ary tensor (see §7 for details).

Because different execution engines, particularly those managing
intermediate stages of models, may execute requests in a different
order than their predecessors, intermediate outputs must be queued
in a buffer dictionary.

7 Implementation

ParaFlex is implemented on vLLM with 35,711 lines of Python, C++,
and CUDA code, maintaining the original API while modifying
distributed execution, scheduling, and memory management.

On top of the design outlined in §6.1, we present more details.
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Single engine logical-to-physical block mapping. Each engine
is responsible for managing the KV cache of its local transformer
layers. We maintain a logical to physical address mapping via a
layer-wise block table, which helps to accommodate multiple model
stages with different numbers of layers. The logical blocks are
addressed by both their layer index and layer-local block index.
The physical blocks are addressed by the position in the physical
partition, which is used as input to the paged attention kernel.

Two-phase cross-engine data transfer. The first phase is the
transfer of the metadata, which includes the request ID, tensor
shape, adapter parameters, etc. This transfer is between CPUs using
remote procedure calls and Ray primitives. To ensure maximum
concurrency and minimize blocking, all the network operations
run on separate CPU threads from the main engine thread. We
note that sending all the metadata for a batch of requests incurs a
large serialization overhead. Thus, ParaFlex leverages incremental
updates on request metadata during the decode phase.

The above remote procedure calls also serve to trigger the down-
stream engine’s receive() calls for both hidden and residual state.
Concurrently, the upstream engine calls send(). Here as well, each
resident model has its own pair of CUDA streams dedicated to
sending and receiving its tensors from the downstream and up-
stream neighbors, respectively. Only one such pair is necessary
because, as mentioned above, each model’s stage has a single pre-
decessor/successor.

8 Evaluation

We evaluate ParaFlex’s performance in serving heterogeneous mod-
els, its response to varying workload characteristics, its efficacy in
addressing the issues in §2 and Figure 1, and the effectiveness of its
constituent techniques.

8.1 Methodology

We evaluate ParaFlex using both a high-fidelity cluster-scale simu-
lator for large-scale, cross-node results, along with a smaller-scale
hardware testbed.

Our simulator uses Vidur’s cost model [1], trained on real GPU
profiling data. The simulated cluster has 8 hosts with 8 A100 GPUs
per host (NVSwitch), connected via 200 Gbps RDMA NICs.

Following best practices, each server is configured with a single
engine of TP size = 8. The simulator implementation follows the
same architecture of ParaFlex as shown in Figure 4. We set the
default max batch size to 64 and disabled batching for prefill.

We validate our approach at smaller scale with a single node
containing 8x A100 80GB GPUs connected via NVSwitch. To em-
ulate the simulated multi-server cluster, we assign an execution
engine to each GPU with TP size = 1 and scale down the number of
NVLink channels to match the RDMA bandwidth between servers.

Baselines. Our evaluation uses the following baselines?.

2Note that no prior work has explicitly considered multi-model and pipeline-parallel
serving (generally opting for one or the other). Thus, when implementing our baselines,
we often need to fill in gaps in their design; where possible, we try our best to be
faithful to the original design/implementation.
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Figure 8: Base case end-to-end latency versus throughput.

Ray Serve: This baseline deploys models to dedicated GPUs, typical
of traditional serving frameworks like Ray Serve and TensorRT-
LLM. Because the models cannot share resources, each model’s
pipeline is short, we assume each model has the same PP size
(default of 2) and no replication.

Multiplexed Sarathi: This pipelining baseline presents the other
extreme of aligning sharding configurations by sharing all GPUs
among all models (PP size 8). As in the original system, the scheduler
limits the number of concurrent decode batches to the stage count.

AlpaServe [14]/MuxServe [7]:

This baseline aligns parallelism configurations but groups models
by size. It creates large and small model groups, assigning resources
proportional to demand rate (model size x request rate).

Multiplexed vLLM: This baseline tests the alternative of handling
large models with only intra-layer parallelism. Due to GPU access
limitations, this baseline is evaluated solely in the testbed?. There,
the TP size is 8, the total GPU count.

Workload. We use the following models and request patterns by de-
fault in all experiments. We chose 1x llama-2-70b-hf, 1x codellama-
34b-instruct-hf, and 2x internllm2_5-20b-chat for deployment, rep-
resenting models of varying sizes. Two internllm2_5-20b-chat mod-
els represent two separate small models, named internllm2_5-20b-
chat-1 and internllm?2_5-20b-chat-2, respectively.

Unless otherwise specified, we assume a skewed and bursty
workload based on prior work [7, 9, 14], as well as our analysis of
OpenRouter’s model popularity rank (§2.1). The popularity of the
models adheres to a Zipf distribution with alpha=1.01, inversely
proportional to their size.

As aresult of this distribution, the top model accounts for 49% of
the total request volume. We assume each model’s requests arrive
via an independent process, replayed from the trace from [24] at
different rates. To extend this trace to a multi-model setting, we
apply random offset on the trace for each model. We vary the seeds
across various arrival rates to ensure our conclusions are robust
against randomness.

8.2 ParaFlex’s Performance Impact

Aggregated latency and throughput. From Figure 8, ParaFlex
displays the highest throughput, whereas Multiplexed Sarathi is the
lowest. ParaFlex achieves low median and P99 latency even under
high load. Under low load, Ray Serve exhibits the best latency due to
the absence of cross-model interference. Compared to Multiplexed
Sarathi, AlpaServe/MuxServe enhances median and P99 latency

3The Vidur simulator requires stage-level multi-node performance profiling, which
would necessitate more GPUs than we are able to obtain.
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by reducing cross-model interference, ParaFlex’s median latency
matches AlpaServe/MuxServe, while ParaFlex’s P99 latency aligns
with Multiplexed Sarathi. ParaFlex shows a greater median latency
advantage than P99, as P99 latency is affected by the large model.

Per-model decomposition. Comparing latency across models,
Figure 9 reveals a coupling effect in the shared pipeline baselines
Multiplexed Sarathi and AlpaServe/MuxServe. Request latency re-
mains consistent within a shared pipeline, regardless of model size,
particularly under high load or tail latency, which is precisely the
HoL blocking effect in action. ParaFlex breaks this coupling, reduc-
ing overall latency, albeit with a slight penalty for large models at
medium load (due to increased probability of interference).

Effect of max batch size. We vary the scheduler’s max batch
size (16, 32, 64) to study its effect. For readability, we keep only
the Multiplexed Sarathi baseline (others exhibit similar effects). In
Figure 10, larger batch sizes enhance throughput and lower median
latency for both systems by facilitating more concurrent decode
requests and minimizing queuing delay. However, larger batch size
also leads to slightly higher P99 latency in ParaFlex. This is because
our scheduler deprioritizes partial batches in favor of full batches.
Under a high batch size, requests have more chance to join a partial
batch and get slowed down.

Overall, higher batches yield better performance improvements
from ParaFlex over Multiplexed Sarathi.

8.3 Effect of Workload Characteristics

Model skewness. We set the Zipf distribution’s s = 2.1 to in-
crease the popularity skewness. This results in the most popular
model receiving 74% of all requests. We also include a perfectly
balanced workload where each model represents 25% of total re-
quests. Thanks to ParaFlex’s flexible replication capability, Figure 11
highlight ParaFlex’s advantages from increased workload skewness
compared to other baselines.

Workload with varying burstiness. The trace shows the coeffi-
cient of variance (CV) to be 12.3. We adjust workload burstiness by
setting the CV of the lognormal interarrival distribution to 0.1, 3.5,
and 24. Figure 12 shows high burstiness improves latency under
low load but may have less benefits or even degrade it under high
load. This occurs because while high burstiness facilitates batching,
it results in more requests needing to be queued when the batch
is full at high load. ParaFlex’s median latency shows lower sensi-
tivity to burstiness than P99. while Multiplexed Sarathi’s median
latency and throughput are also more sensitive. ParaFlex’s insensi-
tive median latency shows it can batch effectively without the help
of workload burstiness.

Workload with varying context and output length. We adjust
the context and output length by scaling the trace’s original length
by 0.25 and 4 times.

Figure 13 shows that longer context length results in higher
ParaFlex throughput with comparable latency. Processing all in-
put tokens in one forward pass renders the time for extra tokens
negligible relative to end-to-end latency.

Varying the output length from Figure 14 shows that longer
lengths result in lower throughput and higher latency due to ad-
ditional slower decode iterations. As reasoning models and longer



SoCC ’25, November 19-21, 2025, Online, USA

P99 Latency (s)

Median Latency (s)

ParaFlex

internim2_5-20b-chat-1

Tao Luo, Kelvin K. W. Ng, Zhen Ping Khor, Sidharth Sankhe, Boon Thau Loo, and Vincent Liu

—&— Multiplexed Sarathi-Serve

internim2_5-20b-chat-2

—e— AlpaServe/MuxServe

Codellama-34b-Instruct-hf

—=— Ray Serve

Llama-2-70b-hf

[«2]
o

N
o
1

N
o
1

thoch

o
I

150

100 -

50 A

Cot——

o 12 : : :

10000 20000 30000 40000

5000 10000 15000 20000

2000 4000 6000 8000
token/s

5000 10000

Figure 9: Per-model breakdown of end-to-end latency versus throughput in the base case.
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Figure 10: End-to-end latency versus throughput with vary-
ing max decode batch size.
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Figure 11: End-to-end latency versus throughput with bal-
anced (top) and imbalanced (bottom) model workload.

outputs become more prevalent, ParaFlex proves increasingly ef-
fective in serving such workloads.
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Figure 12: End-to-end latency versus throughput with vary-
ing burstiness.
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Figure 13: End-to-end latency versus throughput with scaled
context length.

8.4 Microbenchmark Analysis

We benchmark heterogeneous models to assess ParaFlex in address-
ing head-of-line blocking and GPU utilization, in comparison to
the Multiplexed Sarathi baseline.

Real models exhibit distinct characteristics (e.g., ratio of depth
to width and attention architecture). To isolate model size as the
only variable, we created synthetic models based on llama-7B, with
60, 120, and 240 transformer layers. We name these as llama-20B,
-40B, and -80B, respectively.

We evaluate two settings with varying model size dispersions. In
the first low-dispersion setting (2x dispersion), there is 1 large model
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Figure 14: End-to-end latency versus throughput with scaled
output length.

—ParaFlex, 2x dispersion(llama-40b) —- Multiplexed Sarathi, 2x dispersion
ParaFlex, 4x dispersion(llama-20b) - Multiplexed Sarathi, 4x dispersion

sec Median latency P99 latency

60 I 150 T
i i
] ]

40 [ 100 I~

/ ~
I / N
/ ’
/! ~
20 A 5071
o
e

8000 16000 24000 32000
token/s

T T T T 0
8000 16000 24000 32000

Figure 15: Llama-20B and Llama-40B end-to-end latency ver-
sus throughput with varying model size dispersion.
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Figure 16: CDF of active GPU percentage.

(llama-80B) and 2 medium models (llama-40B). In the second high-
dispersion setting (4x dispersion), there is 1 large (llama-80B) and 4
small (llama-20B) models. Identical model instances are treated as
separate models, each with a uniform arrival rate.

Mitigating HoL blocking. In Figure 15 we aggregate the through-
put and latency of smaller models in both settings. ParaFlex con-
sistently demonstrates higher throughput and lower latency for
smaller models. Greater model size dispersion leads to improved
latency and throughput with ParaFlex. This indicates ParaFlex mit-
igates HoL blocking.

Increased GPU activity. We calculated the percentage of active
GPUs over time. A higher percentage indicates better utilization.
Figure 16 shows the active GPU percentage at system saturation—
ParaFlex significantly improves GPU utilization compared to Multi-
plexed Sarathi. This effect increases with higher model dispersion.
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Figure 17: End-to-end latency vs. throughput with/without
ParaFlex’s placement and sharding optimizations.

Full Batch First -+ w/o Full Batch First

sec Median latency P99 latency
40 150

20000 40000 60000 80000
token/s

;i — T T 0
20000 40000 60000 80000

Figure 18: End-to-end latency vs. throughput with/without
ParaFlex’s ‘full batch first’ scheduling policy.

8.5 Ablation Study

We maintain the same workload as §8.2 while disabling specific
techniques to showcase their effectiveness.

Sharding. A new baseline is created by disabling ParaFlex’s shard-
ing and replication mechanisms. This baseline uses a shared shard-
ing plan and pipeline across all models while keeping the local
scheduler of the execution engine. Figure 17 shows that this base-
line has significantly worse median and P99 latency than ParaFlex,

although with higher throughput.

Placement strategy. We compare our same-order DRF-based place-
ment strategy to random placement of model stages. Both strategies
maintain identical sharding, replication, and they avoid overlapping
between replicas. The random placement ensures a uniform num-
ber of model stages across execution engines for load balancing. We
run multiple times with different seeds. Figure 17 shows ParaFlex’s
same-order placement enhances throughput while maintaining
similar median and P99 latency.

Scheduling. We compare our maximum-sized decode batch-first
scheduling policy with the standard prefill-first approach.

Figure 18 shows that the full-batch-first policy effectively im-
proves the peak throughput and reduces the tail latency. When the
system is saturated, our policy executes fewer batches, demonstrat-
ing its superior batching effectiveness.

8.6 System Evaluation

We validated simulation results on a small-scale hardware testbed.
The execution engine’s TP size is reduced to 1. As a result, the
maximum batch size is lowered to 32 to reduce swapping. The
block size is set at 32 KB. Since system evaluation is slower than
simulation, we also decreased the burstiness level and set CV=10
for stable performance metrics with fewer requests. As shown in
§8.3, performance metrics show minimal sensitivity to burstiness.
The Multiplexed vLLM was introduced as an additional baseline,
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Figure 19: Median (left) and P99 (right) end-to-end latency
versus throughput in system.

where all models share the same tensor-parallel group of 8 GPUs.

From Figure 19, ParaFlex achieves the highest throughput, fol-
lowed by Ray Serve and shared pipeline variants. Multiplexed vLLM
exhibits the lowest throughput and latency due to limited tensor-
parallel scalability with low-bandwidth interconnects. Compared to
the simulation, Ray Serve outperforms other baselines in through-
put. This is due to the simulator’s underestimation of stage over-
heads beyond computation and communication. Non-multiplexing,
with the shortest pipeline, experiences the least overhead.

Ray Serve and ParaFlex show low median latency, while Multi-
plexed vLLM has the highest. Similar to the simulation, AlpaServe/-

MuxServe improves median latency compared to Multiplexed Sarathi.

Notably, ParaFlex’s P99 latency is lower than some baselines under
low load. The testbed largely aligns with the simulation results and
highlights Multiplexed vLLM’s limitations for multiplexing with
restricted cross-GPU bandwidth.

9 Discussion

Autoscaling. While autoscaling falls outside the primary scope of
our contribution, it presents distinct challenges that merit dedicated
future investigation. Reconfiguration would be triggered by major
workload shifts or hardware updates. Extending ParaFlex to dy-
namic reconfiguration requires detecting workload shifts, planning
and executing new configurations, and migrating existing requests.
A detailed analysis of this process is orthogonal to the primary
contributions of this paper.

MoE model support. ParaFlex assumes dense models and tensor
parallelism, MoE models and expert parallelism can be handled
similarly after considering model sparsity.

For MoE, we expect ParaFlex’s planning algorithm can treat MoE
layer as mostly black-box and account for sparse utilization .

In particular, load imbalance between experts adds complexity,
but ParaFlex can profile average active-expert loads, use conser-
vative or worst-case stage-time estimates during planning, and
potentially apply shortest-job-first (SJF) or preemptive scheduling
policies at runtime to mitigate HoL at runtime. Expert balancing is
an active area of research and better balance improves ParaFlex ’s
fit.

10 Related Work

Multiplexed LLM serving. The most relevant prior work is sys-
tems that support multiplexed LLM serving. Using the terminology
of [7], we can divide proposed techniques into spatial multiplexing
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and temporal multiplexing.

ParaFlex uses temporal multiplexing. It could combine with spa-
tial multiplexing approaches like GSLICE [6] and MuxServe [7], but
a full exploration of the fusion is beyond our scope.

The most relevant work AlpaServe [14], forces identical par-
allelism configurations. ParaFlex demonstrates substantial advan-
tages through flexible, unaligned pipelines with finer-grained shard-
ing. Also relevant are Serverless LLM [9], Medusa [28] QLM [22].
They assume a different execution model where GPUs only load
one model at a time, necessitating model weight loading from main
memory or storage before serving requests for another model. In
contrast, our approach maintains multiple models in GPU memory,
preventing context switches in the critical path.

HoL blocking in LLM serving. We note that issues like HoL
blocking also exist in some single-model contexts. Prefill iterations
take longer than decode. Sarathi-serve [2] incrementally prefills
in chunks. Splitwise [21], DistServe [31], DéjaVu [25], and Tetriln-
fer [11] separate prefill and decode into different instances.

Limited KV cache space can also cause long decode requests to
block subsequent ones. FastServe [27] mitigates this by preempting
long-running requests after each decode iteration.

Interference occurs intermittently in both settings; prefill hap-
pens once per request, while long decode requests are less frequent
due to the tail distribution of output lengths. We are addressing
the orthogonal HoL blocking problem in serving heterogeneous
models, a persistent issue affecting performance in each iteration.

Pipeline merging in training systems. Pipeline merging has
been explored in training systems such as Chimera [13] DeepSeek-
V3 [16] and RLHFuse [32] to improve GPU utilization. While these
systems share ParaFlex’s pipeline-optimization goals, they address
fundamentally different challenges.

Training workloads are predictable, allowing carefully designed
fixed schedules. Serving workloads are highly dynamic and bursty,
making fixed pipeline schedules impractical. Likewise, training’s
primary goal is throughput, while inference is latency-sensitive.
Further, training includes both forward and backward passes; infer-
ence has only forward passes. These fundamental differences lead
to different placement strategies, e.g., training systems use bidirec-
tional pipelines to reduce bubbles, while ParaFlex uses consistently
ordered pipeline placement to avoid contention and minimize de-
lays, optimized specifically for forward-only passes.

11 Conclusion

To address limitations in current pipeline-parallel serving systems,
we propose ParaFlex, a serving system that allows for autonomous
sharding and independent scheduling. This architecture reflects
a shift toward decentralized system methodologies, challenging
conventional assumptions in LLM serving and paving the way
for more resource-efficient multi-model environments. The new
architecture introduces a rich design space. We leave the exploration
of model dependency such as agentic workflows and multimodal
LLMs for future work.
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