
Paella: Low-latency Model Serving with
Software-defined GPU Scheduling

Kelvin K.W. Ng
University of Pennsylvania
kelvinng@seas.upenn.edu

Henri Maxime Demoulin
DBOS, Inc.

maxdml@dbos.dev

Vincent Liu
University of Pennsylvania
liuv@seas.upenn.edu

Abstract
Model serving systems play a critical role in multiplexing
machine learning inference jobs across shared GPU infras-
tructure. These systems have traditionally sat at a high level
of abstraction—receiving jobs from clients through a nar-
row API and relying on black-box GPU scheduling mecha-
nisms when dispatching them. Fundamental limitations in
the built-in GPU hardware scheduler, in particular, can lead
to inefficiency when executing concurrent jobs. The cur-
rent abstraction level also incurs system overheads that are
similarly most significant when the GPU is heavily shared.
In this paper, we argue for co-designing the model com-

piler, local clients, and the scheduler to bypass the built-in
GPU scheduler and enable software control of kernel execu-
tion order. Doing so enables the use of arbitrary scheduling
algorithms and reduces system overheads throughout the
critical path of inference.

CCS Concepts: • Software and its engineering→ Com-
pilers; Scheduling; Real-time systems software; Software
performance.

Keywords: GPUs, low-latencymodel serving, machine learn-
ing inference, scheduling
ACM Reference Format:
Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu. 2023.
Paella: Low-latency Model Serving with Software-defined GPU
Scheduling. In ACM SIGOPS 29th Symposium on Operating Sys-
tems Principles (SOSP ’23), October 23–26, 2023, Koblenz, Germany.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3600006.
3613163

1 Introduction
Machine learning (ML) continues to find utility in every as-
pect of today’s software systems. In applications, ML-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613163

predictions are used for everything from computing database
indices to generating recommendations for users [43, 70]. In
computer networks and systems, they have been proposed
as a replacement for heuristics and hand-tuned procedures
in scheduling, intrusion detection, and configuration opti-
mization [6, 14, 41, 60, 69, 71]. The proliferation of these
techniques—both in the critical path of user requests and
multiple points therein—necessitates minimizing the latency
and maximizing the throughput of ML inference.
Model serving systems like NVIDIA’s Triton [52], Clip-

per [19], and Clockwork [28] play a key role in this process—
enabling multiple users and models to share GPU infras-
tructure. Typically sitting above the model execution engine
(e.g., Tensorflow, PyTorch, JAX, etc.) and separate from the
client applications, these systems are responsible for receiv-
ing incoming requests, choosing the model/configuration,
scheduling, and eventually dispatching model executions to
the underlying execution engines.

Unfortunately, despite large strides toward improving the
performance of these systems, today’s serving platforms con-
tinue to struggle to provide low latency, particularly when
the GPU is heavily shared andmodels exhibit high dispersion.
We argue that this struggle stems from significant inefficien-
cies in the interactions of the serving platform with both
(𝑎) the clients from which requests arrive and (𝑏) the GPU
execution logic to which the requests are dispatched. For
(𝑎), we show that the overhead of the serving platform—
encompassing serialization, de-serialization, scheduling, dis-
patch, etc.—can sometimes rival the execution time of the
actual models. For (𝑏), we find that inefficient FIFO-based
scheduling policies (that have been baked into the CUDA
runtimes, GPU drivers, and hardware) are susceptible to fre-
quent Head-of-Line (HoL) blocking as well as mismatches
between scheduling objectives and the job-completion-time
targets of applications. In both cases, treating the serving
platform’s surrounding components as black boxes is detri-
mental to inference latency.
Existing approaches to addressing the above problems,

including many introduced by GPU manufacturers, have
provided only partial solutions. For example, allowing users
to submit CUDA kernels directly to the GPU avoids com-
munication overheads but introduces substantial context-
switching overheads when running multiple GPU processes
concurrently. Post-Volta MPS [2] support in GPUs can re-
move some of these overheads and iterative improvements to

595

https://doi.org/10.1145/3600006.3613163
https://doi.org/10.1145/3600006.3613163
https://doi.org/10.1145/3600006.3613163
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613163&domain=pdf&date_stamp=2023-10-23

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

CUDA stream queues/priorities (e.g., in the Fermi and Kepler
microarchitectures) expose some control of the built-in GPU
scheduler to the application; however, these approaches are
still prone to the problem of HoL blocking and the mismatch
between scheduling objectives and application performance
targets [47, 56]. In the end, the abstraction level of today’s
serving systems imposes overheads and drops information
that is not easily mitigated by more hardware complexity.

In this paper, we present Paella, a lightweight framework
for low-latency ML inference on shared GPU accelerators.
Paella is a co-design of a request submission interface, model
scheduler, and model execution logic that, together, ensure
high utilization and minimal latency at all stages of infer-
ence request processing: submitting a job, scheduling its
constituent CUDA tasks, and returning the results.

Paella’s primary design goal is to enable fine-grained con-
trol over scheduling and its related tasks. When dispatching
jobs to the GPU, control and subsequent careful management
of GPU scheduling can circumvent inefficiencies in hardware
schedulers and fundamental limitations in their scheduling
policies. When receiving jobs from clients and returning
results, control over communication and receive-side opera-
tion enables Paella to minimize request latency overheads
while also limiting resource consumption overheads.

Supporting Paella’s fine-grained control are two key in-
novations. The first is a lightweight and automated TVM
compiler instrumentation to explicitly shine a light on cur-
rently opaque GPU scheduling mechanisms. With a detailed,
real-time view of the GPU and its available resources, Paella
enables softwareization of the scheduler, which, among other
benefits, allows the Paella serving platform to schedule ev-
ery CUDA kernel individually, precisely, and based on ar-
bitrary performance/fairness metrics, regardless of the be-
havior of the built-in GPU scheduler. The second is a series
of specialized communication channels between each of the
above components—the GPU, the client, and the serving
framework—that support fine-grained coordination and that
borrow ideas from recent and classic work, e.g., the polling
and shared-memory communication of low-latency Library-
OS services [10, 21, 25, 38, 59], techniques in lock-free data
structures, and the low-overhead multitasking capabilities
provided by co-routine mechanisms. Both innovations were
challenging. Communication channels must be carefully de-
signed to not hinder inference latency. Paella scheduler and
kernel instrumentation must be lean to offer superior sched-
uling capabilities while keeping overheads low.
We implemented and evaluated Paella on a GPU testbed.

We show that Paella’s scheduling algorithm, on its own, can
sustain 1.4× more load and 1.35× lower latency than the
baseline. As a system and compared to NVIDIA’s Triton, it
can sustain up to 58× more load and 11× lower latency. It
does all of this while leveraging only a single CPU core for
scheduling and dispatching.
Beyond improving the performance of model serving, a

Streams (Fermi and earlier)

SM1

SM2

Streams (Kepler and later) and MPS (Volta and later)

SM1

SM2

Ideal

SM1

SM2

Baseline

SM1

SM2

Figure 1. Simplified illustration of NVIDIA GPU scheduling
under different submission methods. For this example, we
assume four tasks consisting of 3 kernels each, all submitted
at time 𝑡 = 0. All kernels occupy an entire SM out of 2 total
SMs. Even for this simple setup, none of the supported meth-
ods of submitting the four tasks results in an ideal schedule.

core incentive for Paella’s software-defined GPU scheduling
is that, fundamentally, there is no single scheduling policy
that is optimal for all workloads [68]. Hence, regardless of the
current or future design of GPU schedulers, Paella’s approach
will benefit inference. In summary, this paper makes the
following contributions:
• We show that existing prediction serving frameworks
are hamstrung by surrounding components and that the
interfaces between these components must be chosen
carefully to achieve low latency and high utilization.

• We introduce a compiler-service co-design that instru-
ments kernels to offer visibility into and full control over
black-box GPU scheduling decisions.

• We present a service architecture that abstracts schedul-
ing from the GPU. Paella uses this tominimize the latency
of the complete inference pipeline: receiving requests,
dispatching them to the GPU, and returning results.

2 Background and Motivation
The past few years have seen tremendous interest in integrat-
ing an increasing amount of classification, regression, clus-
tering, and reinforcement learning into the critical path of
user requests [6, 22, 43, 60, 69]. Compared to other contexts,
such as model training or bulk model serving, critical-path
inference tasks are distinct in their extreme sensitivity to la-
tency and the use of smaller models (due to quantization and
distillation). For example, a real-time NLP application that
samples voice at 24 KHz may only have 41.5µs to process
each inference query [55]. More extreme cases also exist,
e.g., the ns-scale latency requirements for ML inference of
particle selection in the Large Hadron Collider [16, 23] and
measurement of gravitational waves [20]. In each case, in-
ference latency determines the allowable complexity (and,

596

Paella: Low-latency Model Serving with Software-defined GPU Scheduling SOSP ’23, October 23–26, 2023, Koblenz, Germany

thus, the accuracy and utility) of the deployed models.
The community has already made tremendous strides in

speeding up the computation itself, e.g., through specialized
hardware [37, 45, 62], algorithms [31, 46], and batching [19].
Unfortunately, for applications with stricter latency require-
ments, computationally shallowmodels, or faster GPUs, com-
putation is only one piece of the execution time—existing
systems sometimes contribute more latency (directly or in-
directly) than the computations themselves.
In this paper, we argue that to achieve low end-to-end

application latency, serving frameworks need tighter integra-
tion with their surrounding components and finer-grained
control over their scheduling and operation. In the remainder
of this section, we provide background on the inefficiencies
of existing model serving platforms and why they are diffi-
cult to address with current serving architectures.

2.1 GPUs and Mismatched Scheduling Policies
One major bottleneck to end-to-end application-level perfor-
mance is the behavior of modern GPU hardware schedulers.
In this section, we focus on those of NVIDIA GPUs.
Fundamentally, GPUs are specialized devices capable of

high levels of parallelism. Originally intended for the sole
purpose of manipulating computer graphics, toolkits like
NVIDIA’s CUDA have led to the use of GPUs in other fields.
For machine learning, in particular, the parallelism and high
memory bandwidth of GPUs lend themselves to the acceler-
ation of computations like matrix multiplication and convo-
lution, which are common in today’s deep learning models.
At an architectural level, a GPU is a PCIe device that

consists of several streaming multiprocessors (SMs), each of
which contains functional units, a register array, and an L1
cache. An SM can run several user contexts concurrently,
with each allocated a static share of the SM’s local resources.

The smallest unit of GPU computation in the CUDA frame-
work is called a thread. Each thread is a sequential program
that users parallelize by grouping many threads into a block
of threads that execute together on a single SM (to facilitate
inter-thread shared memory and synchronization). Once a
block is placed in an SM, the required resources, includ-
ing registers, shared memory, and the slots for blocks and
threads, are statically allocated for the duration of the block
(in contrast to CPUs, where threads share resources using
time-division multiplexing)1. Blocks can then be grouped
into a grid to form a kernel; all of the threads in a kernel
can execute concurrently. Kernels are the granularity at
which applications generally interact with the GPU. A typical
application-level task/model will consist of several kernels,
often executed sequentially.

Scheduling in a modern GPU. GPUs contain a limited

1Pascal and later GPUs include preemption capabilities but they impose
prohibitive swapping overheads and are not typically used in practice [7].

number of hardware queues where they receive kernel laun-
ches and consider them for scheduling. One distinguishing
feature of these queues is their strict FIFO nature. In the
basic case (single process, single stream), the GPU’s internal
scheduler will examine only the earliest-launched kernel to
see if any of its blocks can be placed given the SMs’ currently
available resources. It does not consider blocks of subsequent
kernels regardless of their resource demands.
Instead, today’s GPUs provide features that help applica-

tions control what is dispatched to the hardware queues and
when. For example, kernels can be submitted to different
streams to indicate that they can be executed concurrently;
with MPS, kernels can be submitted from different processes
and receive similar benefits; and with Multi-Instance GPU
(MIG), users can set up multiple virtual GPUs with strong iso-
lation properties. In the end, however, users must fully trust
the hardware to determine the kernel execution schedule.
What is schedulable at a given moment is, thus, heavily

dependent on the order of kernel submission, the GPU’s
current resource utilization, and the features/configuration
of the GPU. Figure 1 illustrates GPU scheduling for different
NVIDIA chips under different submission methods. For the
Fermi microarchitecture or earlier, GPUs only support a
single hardware queue, regardless of the number of user-
defined streams. So, kernels from all streams are serialized to
the hardware queue in “issue order.” The primary advantage
of streams in these architectures occurs only after all of a
kernel’s blocks have been placed and the new head of the
hardware queue has no running dependencies, in which
case streams may allow the GPU to execute an independent
kernel. With a natural submission order (one model at a
time), only the first/last kernels of adjacent models can share
the GPU (second row in the figure).
Acknowledging this issue, Kepler chips added multiple

hardware queues [1] such that each stream is mapped onto
one of those queues. Within each queue, operation proceeds
as in earlier microarchitectures, with limited concurrency;
however, the GPU can now consider the head of each hard-
ware queue independently, increasing the opportunity to
schedule independent kernels when resources are available.
MPS extends this abstraction to kernels from different pro-
cesses (which would have otherwise used expensive pre-
emption). Unfortunately, while these approaches (partially)
mitigate the above scheduling issues, modern GPU schedul-
ing still leaves much to be desired.

HoL blocking in today’s GPUs. As one example, we ob-
serve that today’s GPUs can still exhibit HoL blocking be-
tween streams as hardware queues are limited. To preview
the potential impact, we compare a naïve submission pol-
icy where all kernels are submitted together to a frame-
work that understands GPU occupancy and can submit each
job’s kernel when they are able to run (i.e., Paella). We use a
GeForce GTX 1660 SUPER, which has 22 SMs, 1024 threads

597

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 5000 10000 15000 20000 25000 30000 35000

p
9

9
 J

C
T

 (
µ

s
)

Goodput (jobs/sec)

Job-by-job submission
Paella dispatching

Figure 2. The traditional method of submitting all the ker-
nels of a job together fills all of the GPU’s hardware queues,
potentially leaving resources idle while other jobs are queued.
In contrast, a well-informed dispatcher (Paella) can increase
sustainable throughput while maintaining good tail latency.

per SM, and 32 hardware queues. We craft a synthetic work-
load where each job has 8 kernels, each with a block of 128
threads, 9 registers, and no shared memory. Each kernel exe-
cutes for ∼300µs, leading to potential concurrency of up to
176 independent kernels.

Figure 2 shows the p99 latency experienced by the work-
load as load increases for both the baseline and Paella. Every-
thing aside from the timing of kernel submission is identical.
Because of HoL blocking, in the worst case, the naïve sub-
mission method will fill up the 32 queues with dependent
kernels and use only 32/176 = 18% of the GPU. In contrast,
Paella, with accurate and timely information about when
kernels start and stop, can optimally interleave the work,
maximizing device usage and providing 2.2× better goodput.

Ignorance of application metrics. Finally, even when the
hardware scheduler can keep the GPU occupied, today’s
schedulers provide an overly simplistic interface that ignores
important application-level objectives. For example, the ideal
schedule of Figure 1 cannot be achieved using any supported
submission ordering. This is in addition to other classic prob-
lems with strict FIFO, e.g., a lack of fairness, ignorance of
deadlines, missing job-level preemption capabilities, etc.
Because all scheduling decisions are handled entirely in

the runtime/hardware, the schedulers of existing model-
serving frameworks have no control over deficiencies at
the GPU runtime/hardware layer. Worse, optimal schedul-
ing policies vary between microarchitectures, making good
kernel submission ordering a moving target.

2.2 Framework Overheads
The remainder of the request processing pipeline includes
many other bottlenecks to end-to-end performance. Typical
overheads, incurred on every inference request, range in the
hundreds-of-µs to millisecond scale and stem from tasks like
serialization/deserialization, batching, and—unfortunately—
service-level scheduling and queuemanagement, all of which
apply even when the network latency is zero.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

D
en

se
N
et

12
1

G
oo

gl
eN

et

G
PT2

M
ob

ile
N
et

V2

R
es

N
et

50

VG
G
16

Yol
oV

5

C
o

m
m

.
O

v
e

rh
e

a
d

 (
%

)

Batch 1
Batch 64

Figure 3. Average overhead of a single batch of requests to
an NVIDIA Triton [52] server. The overhead is the end-to-
end client latency minus the CUDA kernel executions and
memory copies over the latter value. For some models, the
serving platform’s latency can double the execution time.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 2 4 6 8 10 12 14 16 18 20

T
o

ta
l
E

x
e

c
 T

im
e

 (
m

s
)

of CUDA Streams

cudaStreamAddCallback
cudaStreamSynchronize
Paella dispatcher

Figure 4. Total time to execute empty kernels under different
synchronization methods. Each stream submits 1000 empty
kernels that are embarrassingly parallelizable.

To quantify the total effect, we set an NVIDIA Triton infer-
ence server [52] and, on the same machine, issue inference
queries for several models that cover a wide range of sizes
(from 38 to 2,499 nodes in the computation graphs). Results
are taken after the average latency has converged. For larger
batch sizes, we submit the entire batch immediately so as to
elide the configurable overhead of dynamic batching; as such,
our results can be seen as a lower bound on overheads. Fig-
ure 3 shows the percentage of the total single-request latency
that is attributable to the serving platform (i.e., everything
except the CUDA memory copies and operator executions)2
For a single request in isolation, the serving platform’s

overhead can be up to 66% of the total execution time. While
pipelining can fill some (but not all) of this overhead with
other useful work, it does not decrease the time to a useful
result. Similarly, optimizations like amortizing overheads
over batches of requests may mitigate the effects on through-
put but not latency. Dynamic batching, in particular, fails to
meet the stringent latency requirements of real-time infer-
ence [16, 20, 55] as not only is the overhead typically higher
due to larger serialization overhead on the critical path (see
Figure 3), the platform must also wait for either sufficient
requests to arrive or a timeout.

2Overheads include serializing the inputs, sending the request through
gRPC, deserializing it at the platform, and with batching, forming a batch
input. The result follows a similar pipeline.

598

Paella: Low-latency Model Serving with Software-defined GPU Scheduling SOSP ’23, October 23–26, 2023, Koblenz, Germany

These overheads can compound when the GPU is under
heavy contention. Figure 4 shows the total execution time
of multiple CUDA streams under different synchronization
methods. The kernels have no dependencies or memory us-
age, so synchronization is the primary source of overhead. As
a contrast, we also show the overheads of Paella dispatching
methods, as described in Section 5.

3 Design Overview
This paper presents a model serving system, Paella, that
introduces at least two innovations:

1. A compiler-library-scheduler co-design that abstracts
the GPU task submission pipeline, enabling the complete
bypass of the GPU hardware scheduler and opening the
door for full, extensible, and portable control over GPU
scheduling decisions.

2. A service architecture and hybrid interrupt/polling pro-
tocol for request submission and result retrieval that, to-
gether with the above instrumentation, simultaneously
minimizes latency and resource overheads.

For (1), Paella uses lightweight, automated compiler in-
strumentation to quickly and efficiently track the ground
truth of what is scheduled and where. Using this fine-grained
information about GPU utilization, the Paella dispatcher can
hold kernels until it can guarantee that they can be placed
soon/immediately, thereby avoiding the GPU scheduler en-
tirely. Instead, it is free to make careful, precise scheduling
decisions based on configurable end-to-end metrics—a bene-
fit that will persist even if GPU vendors introduce improved
GPU schedulers in future device generations (as no single
scheduling policy is optimal for all workloads [68]).

Supporting the instrumentation and dispatcher is (2), which
includes a series of optimized communication channels that
facilitate low-latency and low-overhead coordination be-
tween all of the components of the system: clients, RPC
handlers, the dispatcher, and instrumented kernels. In fact,
we show that Paella can reduce serialization and scheduler
overheads by more than a factor of 3, all with only a single
CPU core for the Paella scheduler and dispatcher. The design
of these channels are inspired by recent single-address-space
unikernels designed for low-latency networking [10, 38, 59],
but with each channel specialized for its particular task.

System components. Paella consists of three components:

• A compiler, built on TVM [15], that instruments kernels
to expose, at runtime, detailed information about the
occupancy and utilization of the GPU’s SMs.

• A client library and communication protocol that issues
requests and responses to the Paella service using a hy-
brid system of inter-process communication that incurs
minimal latency overheads.

• The Paella dispatcher, which accepts requests and moni-
tors GPU resource usage in order to make fine-grained

Paella
Dispatcher

Client

Compiler
and

Model Adaptor

Client

GPU(s)
1

2

3

4 5

Figure 5. Paella system design. Solid arrows connecting com-
ponents indicate operations on the critical path of inference.
Dotted lines are not on the critical path.

scheduling decisions. Careful planning allows Paella to
elide most of the GPU block scheduler’s responsibilities
and make them software-defined so that scheduling de-
cisions can incorporate higher-level information.

We describe each of the above components in the follow-
ing three sections. Note that, for simplicity, we primarily
focus on local inference tasks where latency overheads are
most apparent but also describe how users achieve remote
inference in Section 5.

Workflow (Figure 5). Users begin (❶) by compiling their
models using Paella’s modified compiler. In addition to typ-
ical compiler tasks, Paella instruments users’ kernels with
monitoring code that exports information about where and
when the kernel was placed. Users submit the compiled li-
brary along with an adaptor-style class that properly loads
and calls into the library with a provided input/output buffer;
together, these two components form an entry in the library
of models that are launchable by the Paella dispatcher.
Local clients (or RPC servers) submit inference requests

(❷) to Paella by writing raw input vectors to a shared mem-
ory queue; the dispatcher uses ground-truth knowledge of
the current occupancy and utilization of the GPU(s) to sched-
ule and deploy all of the constituent kernels of each client
inference request (❸) without the interference of hardware
and runtime queues/schedulers. Before the final kernel of
the job completes, the dispatcher will inform the client ap-
plication of the impending job completion using a simple
IPC socket (❹). Only after the client receives the interrupt-
based notification will it begin to poll (❺) for results. Shared
memory used by the client to receive the result is freed asyn-
chronously.

4 Transforming CUDA Kernels and Jobs
At its core, Paella enables software-defined GPU schedul-
ing by modifying inference jobs to delay their release to the
CUDA runtime. The goal is to ensure that the GPU is only
provided enough work for full utilization and no more—the
rest are held by the Paella dispatcher for on-time release.
Paella accomplishes this through transparent transforma-
tions of the device and host code of existing CUDA jobs.

599

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

Resource Computation

Blocks |𝑆𝑀 |
Threads

∑
𝑖∈𝑆𝑀 Db𝑖

Registers
∑
𝑖∈𝑆𝑀 Db𝑖 * regs_per_thd(𝑖)

Shared memory
∑
𝑖∈𝑆𝑀 Ns𝑖

Table 1. Per-SM physical limits for GPUs and how Paella
computes their usage. 𝑆𝑀 is the set of all blocks resident on
an SM, as determined by runtime tracking;≪Dg,Db,Ns≫ is
the execution configuration of the kernel; and regs_per_thd
retrieves the (post-compilation) register requirements.

4.1 Device-side Resource Tracking
When building the kernels of the model, the Paella compiler
inserts instrumentation to expose, at a fine granularity, the
effects of the GPU hardware scheduler, i.e., the exact set of
resources used at a given moment in time. The applicable
set of (per-SM) resources is shown in Table 1. Their usage
determines whether additional kernels can be scheduled and
are used by Paella to saturate the GPU without incurring
unnecessary queuing.

Execution configuration information. As mentioned in
Section 2.1, the resource usage of each kernel is static. In
particular, before the launch of the kernel Paella can learn:

• Grid size: The number of blocks to be scheduled.
• Block size: The number of threads per block.
• Shared memory: The amount of shmem per thread block.
• Register count: The number of utilized registers per thread.

In the common case, the first three are extracted directly
from the execution configuration included in the kernel
launch command. The fourth can be extracted at compile-
time and included as part of the model metadata. In the case
of runtime compilation, e.g., using NVRTC [3] or another JIT
compiler, Paella can extract the statistics after the PTX [4]
module has been loaded by querying the resource attributes
of the CUmodule’s constituent functions.

Device-side instrumentation. While information about
a kernel’s resource requirements can be gleaned before the
kernel is even launched, information about which thread
blocks have been scheduled and the SMs on which they were
scheduled is not available before the blocks are placed by
the hardware scheduler. Further, the black-box nature of
the GPU’s block scheduler means that not only can we not
predict the blocks’ placement a priori but we also cannot
reliably determine them a posteriori, at least not from the
scheduler itself. Instead, Paella tracks these metrics with
the help of source-level instrumentation and fast runtime
communication to both the dispatcher and the client of the
inference request. Specifically, the Paella compiler will auto-
matically instrument kernels to export the following from
every running block:

� �
__global__ void
myKernel(..., notifQ, kernId) {
if(threadIdx.x == 0) {
startCount = atomicInc(&(notifQ.startCount)) + 1;
if(startCount % 16 == 0 startCount == TOTAL_BLOCKS) {
asm("mov.u32 %0, %smid;" : "=r"(smId));
index = atomicInc(&(notifQ.tail), MAX_SIZE);
notifQ.data[index] = {PLACEMENT, smId, kernId};

}}
// computation
__syncthreads()
if(threadIdx.x == 0) {
endCount = atomicInc(&(notifQ.endCount)) + 1;
if(endCount % 16 == 0 endCount == TOTAL_BLOCKS) {
index = atomicInc(&(notifQ.tail), MAX_SIZE);
notifQ.data[index] = {COMPLETION, smId, kernId};

}}}� �
Figure 6. Simplified code of a device-side CUDA function
that has been instrumented to export information about
scheduling decisions. notifQ is the device→host channel.

• Block start: An indication that a particular block has suc-
cessfully been scheduled to an SM.

• SM identifier: The ID of the SM to which this block has
been placed. Written with the block-start notification.

• Kernel identifier: A unique ID that helps the dispatcher
to distinguish between different executions of the same
kernel, which may have different resource requirements,
e.g., due to JIT compilation.

• Block end: An indication that a particular block has suc-
cessfully completed, that its outputs are written and that
its resources will soon be freed.

Figure 6 shows an abbreviated version of an instrumented
device-side function. Two additional function parameters are
required. The first is a host-device shared-memory queue on
which notifications of thread block placement/completion are
posted to the host. The second is the unique kernel ID, which
is generated by the dispatcher at execution time and included
when writing to the notification queue. The kernel writes
to the queue twice: once at the beginning and once at the
end of the kernel. For both, a single designated thread from
each block is responsible for generating notifications to the
Paella dispatcher to inform it that the block was either just
placed or just completed. See Section 5.2 for details on the
queues’ operation and how they are written/read efficiently.

Note that the compiler transformations are uniform across
all kernels, regardless of their content. As such, the trans-
formations are simple, and Paella can use any existing TVM
model implementation with no user modifications.

4.2 Host-side CUDA Emulation
On the host side, Paella intercepts all CUDA calls and emu-
lates the scheduling responsibilities of the CUDA runtime
and GPU. It does so by wrapping all relevant CUDA library
functions in a stub and automatically replacing calls in the

600

Paella: Low-latency Model Serving with Software-defined GPU Scheduling SOSP ’23, October 23–26, 2023, Koblenz, Germany

1 Function kernelLaunch(Dg, Db, Ns, S, ...):
2 if 𝑆 = 0 and waitlist[jobID] has blocking streams then
3 Add launch to waitlist as inactive
4 else if waitlist[jobID] already has kernels for S

or (𝑆 is blocking and waitlist[jobId] has
stream 0 kernels) then

5 Add launch to waitlist as inactive
6 else
7 Add launch to waitlist as active
8 Function deviceSynchronize():
9 while waitlist[jobId] has any kernels do

10 coroutine_context.yield()

Figure 7. Pseudocode for a subset of Paella wrapper func-
tions. The functions intercept CUDA stream operations so
that they may be handled on Paella’s timeline.

user’s code with Paella versions. Whenever a kernel or mem-
ory copy would have been submitted to the CUDA runtime,
Paella instead adds them to a waitlist until the GPU is ready
to handle them—all without user intervention.

Kernel waitlists. Per-job waitlists, maintained by the Paella
dispatcher, replace the functionality of CUDA streams and
hardware queues. The waitlists track the set of kernels that
are currently schedulable (active) and the set that are de-
pendent on the completion of other operations (inactive).
The active/inactive designation follows CUDA stream se-
mantics [7, 53], e.g., only the first incomplete kernel of each
stream is ‘active,’ the default stream is serialized compared
to all other streams unless otherwise specified, etc.

Coroutines. Given a set of user-defined models/adaptors
and incoming requests, a straightforward implementation
might execute each request in its own thread and yield execu-
tion to other threads only when encountering a blocking call
or forced preemption. While this retains the interface and ab-
stractions of a traditional CUDA program, it presents issues
with CPU utilization and context-switching overheads aris-
ing from the potentially large number of resulting threads.
To maintain a traditional CUDA programming abstrac-

tion while bounding the number of active threads, Paella
implements cooperative multitasking via Boost coroutines, a
stackful coroutine library. When users call a CUDA function
that is synchronous with respect to the host, the wrapped
version will yield the coroutine context; otherwise, it will
continue executing. All of this logic is hidden inside the
wrapped CUDA functions. Figure 7 illustrates two repre-
sentative cases. With this architecture, Paella only needs a
single thread; however, it can be parallelized by sharding
jobs across threads.

Note that the use of coroutinesmeans that users should not
modify common objects or memory addresses. In addition,
for performance, users should not spin up threads of their
own (CPU or GPU), jobs should not have high execution
times, and programs should not contain non-CUDA blocking
calls; programs that use these features will interfere with

� �
class MyJob : public PaellaJob {
public:

void init() override {
mod_ = LoadFromFile("model.so");
gmod_ = mod_.GetFunction("default")(CTX_GPU);
run_ = gmod_.GetFunction("run");
set_input_ = gmod_.GetFunction("set_input");
get_output_ = gmod_.GetFunction("get_output"); }

void run(const size_t len, void* io_ptr) override {
input = io_ptr; output = io_ptr + INPUT_SIZE;
set_input_(0, input);
run_();
get_output_(0, output); }

private:
Module mod_, gmod_;
PackedFunc run_, set_input_, get_output_; }� �

Figure 8. An example job definition in Paella. init() loads
a compiled TVM library; run() takes a shared-memory in-
put/output buffer from the client and executes the request.

Paella’s fine-grained control over scheduling/dispatching
and should be restructured. As job definitions must be pre-
loaded before they are used, we anticipate that these controls
can be enforced by the service owner out-of-band.

‘Almost finished’ notification. Finally, to support the client
operation of Section 5.3, Paella adds an annotation to the job
that indicates that the job and its outputs will be ready soon.
In our current implementation, this notification is triggered
either before the final device-to-host memory copy or, in
the case of a pinned output, before the last kernel launch.
The goal of the annotation is to wake the client with enough
time to catch the finished notification without wasting un-
necessary cycles. We note that it may be possible to predict
lower-bound execution times for most ML kernels [28] and,
thus, conservatively predict the wake-up timer, but we leave
the design of such techniques to future work.

5 The Paella Dispatcher
The Paella dispatcher runs on a dedicated CPU core and is
responsible for receiving inference requests, dispatching its
kernels, and managing communication between the client
and GPU. To ensure the lowest possible latency at each stage,
Paella takes inspiration from recent work on low-latency
single-address-space library OSes [10, 38, 59] by leveraging
shared-memory queues for zero-copy, kernel-free commu-
nication. To that end, each client obtains a shared memory
region when setting up the connection to the dispatcher.

5.1 The Client →→ Paella Channel
Users add new job definitions to the Paella service by sub-
mitting a compiled shared library and an adaptor class that
assists in executing it. Figure 8 shows an example adaptor.
Afterward, clients submit requests to Paella as follows:

req_id = paella.predict('model_name', len, io_ptr,
options);

601

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

model_name refers to a previously instrumented and loaded
model; io_ptr is a pointer to a shared-memory buffer of
length len that will be passed to the job’s run() function
(containing, for instance, the input and output tensors); and
options specifies any extended functionality of the Paella
service (e.g., model variants). The return value, req_id, differ-
entiates between results from different jobs (see Section 5.3).
This interface avoids the need to marshal or unmarshal

data—a primary source of overhead in many of today’s serv-
ing systems. Buffer overflows can be prevented by verifying
that [io_ptr, io_ptr + len) fits within the allocated region.
On the other end of the connection, the dispatcher polls

each shared-memory queue for incoming client inference
requests in a round-robin fashion. The client job is executed
immediately, though its constituent kernels may be delayed
and/or interleaved with kernels from other jobs according
to the scheduling policies of Section 6.

Remote inference. Paella handles remote inference with a
straightforward extension to the above design. Specifically, it
establishes a local client that acts as an RPC server for remote
requests. The local client transparently forwards messages
between the remote client and RPC server, and both ends
leverage kernel-bypass techniques like eRPC [39]. A more
optimized design may be possible, but a full exploration of
low-latency remote inference is out of the scope of this paper.

5.2 The Paella ↔↔ GPU Channel
Dispatching kernels.The Paella dispatcher and the GPU co-
ordinate closely as well. In the Paella→GPU direction, Paella
submits waitlisted GPU operations (e.g., memory copies in-
/out of the GPU and execution of a sequence of kernels) when
the scheduling algorithm deems it appropriate. When that
time comes, Paella launches kernels directly using the ker-
nels’ original execution configuration and parameters, with
two notablemodifications: (1) the additional instrumentation-
related kernel parameters introduced in Section 4.1 and (2) a
carefully replaced stream identifier.
For the second, as we saw in Section 2.1, while recent

GPUs attempt to ensure that streams are asynchronous with
respect to one other, false dependencies and HoL blocking
can still arise if there are more streams than hardware queues.
Because of this, Paella also overrides the cudaStreamCreate

function to return a virtual stream, which will be replaced
at kernel launch time with an available CUDA stream.

Polling the instrumented statistics. During execution,
the dispatcher will continually poll the notifQ on the GPU
to read the instrumented statistics of Figure 6 and to track,
at fine granularity, the current occupancy of the GPU. Like
the client-to-Paella channel, notifQ is unidirectional and im-
plemented using shared memory (specifically, pinned mem-
ory and unified virtual addressing). It contains two types of
events, placements and completions, which are each accom-
panied by the kernels’ unique ID and SM ID and are used to

update the current GPU resource utilization. A third invalid
type indicates that the entry is stale or inconsistent—the
dispatcher sets an entry’s status to invalid after reading it
and the kernels set a valid type as part of their notifQ write.

We note that notifQ is a circular buffer that does not check
for overruns by the device-side writer. In general, this can
lead to data loss, but in Paella, the demand on the queue
is capped by the number of outstanding blocks. Paella can,
thus, enforce flow control by delaying kernel dispatches.

Ensuring efficiency. Given the addition of code to every
kernel and the centrality of polling to the critical path of
the Paella dispatcher, we find that heavy optimization of the
instrumentation and its communication is essential for good
performance. Paella includes several such optimizations.
One such optimization is to implement notifications as a

lock-free queue in which notifications are in the form of a
single write to a 64-bit integer: 8 b for the type, 8 b for the
SM ID, and 32 b for the unique kernel ID. Because the write
fits within a primitive type, filling the actual queue element
(and resetting it to invalid) is guaranteed to be atomic on
most GPU architectures [17]. Further, Paella uses a single
notifQ for each dispatcher thread, reducing the locations the
dispatcher polled. The tradeoff is the need for a single atomic
increment per enqueue, but our tests demonstrated that this
overhead was minimal (see Figure 4).
Finally, to reduce the size of the queue, we batch start

and end notifications such that each notification signals the
start/end of a group of up to 16 thread blocks. For models
with high parallelism, this significantly reduces overheads.

5.3 The GPU →→ Client Channel
When outputs are available, clients retrieve results with:

req_id = paella.readResult(options);

The function returns the first available completion’s ID. opt-
ions modifies the behavior of the function, with the most
important option being the NONBLOCK flag. Without the flag,
the function will wait for at least one indication that a job has
been completed and that its output is ready to read directly
from shared memory (again, without marshaling overheads).
Adding the flag, it may return the negative code EAGAIN.

Internally, the function relies on a similar shared-memory
technique as the other two communication channels in this
section. Unfortunately, applied naïvely, this would require
each blocking client to maintain a continuous polling thread
to achieve optimal latency—increasing the number of utilized
CPU cores proportionally to the number of active clients or
necessitating a tradeoff between latency and CPU utilization.

Instead, in order to achieve the best of both worlds, block-
ing read calls utilize a hybrid mechanism for inter-process
communication. Initially, clients listen on a Unix socket for
the wake-up signal introduced in Section 4.2. Only after will
the client begin polling for completion events. This is similar
to Linux’s NAPI interrupt-mitigation techniques, except that

602

Paella: Low-latency Model Serving with Software-defined GPU Scheduling SOSP ’23, October 23–26, 2023, Koblenz, Germany

 0

 1000

 2000

 3000

 4000

 5000

 0.1 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Additional Delay (µs)

Figure 9. The impact of additional scheduling complexity on
Paella’s performance. Varying amounts of synthetic delay are
added to its default scheduling algorithm. The late-binding
nature of the Paella dispatcher necessitates efficiency.

the switch to polling is predictable in our case.

6 Scheduling Strategy
Leveraging the efficient communication channels between
instrumented kernels and the serving platform, Paella lifts
scheduling out of the GPU device and into the Paella dis-
patcher, enabling flexible and extensible scheduling approach-
es that are not possible today, e.g., the ability to schedule
individual kernels based on remaining job execution time.

The space of possible algorithms is unbounded and beyond
the scope of this paper, but we note that not all algorithms are
suitable for low-latency serving. In particular, because Paella
tries its best to minimize the occupancy of the GPU hardware
queues, any computational overhead in the dispatcher has
the potential to impact critical-path latency. This effect is
amplified because Paella makes scheduling decisions on a
per-block or per-block-group granularity (as opposed to a
per-kernel granularity). Figure 9 illustrates the effect with
synthetic injected delay in the scheduling algorithm. Paella’s
default scheduler addresses this challenge with a simple but
effective algorithm that considers the following:

(1) Remaining time. Paella implements a scheduling strat-
egy based on shortest-remaining-processing-time (SRPT).
Paella does not know the precise running time of each ker-
nel (or even which kernels may execute in a given job) a
priori due to non-deterministic contention and application
control flows; however, it can estimate it as follows.
When submitting the model, Paella will first run a series

of simple profiling runs of the job, tracking the average exe-
cution count and time of each kernel (distinguished by their
locations in the shared library); these profiles can be further
refined online. As a heuristic, we assume independence and
compute the remaining time as:

remaining =
∑︁
𝑖∈𝐾

max(0,𝐶𝑖 − 𝑐𝑖) ·𝑇𝑖)

where 𝐾 is the set of unique kernels in the job, 𝑇𝑖 is the
execution time of job 𝑖 , 𝐶𝑖 is the execution count of job 𝑖 ,
and 𝑐𝑖 is the number of times the kernel has run thus far. 𝑥
is the average of all previous observations of 𝑥 . Although

Model TVM Exec Time Size

ResNet-18 [30] 1.58ms 75MB
MobileNetV2 [33] 1.67ms 14MB
ResNet-34 [30] 2.55ms 144MB
Squeezenet1.1 [36] 4.79ms 5.2MB
ResNet-50 [30] 5.76ms 124MB
DenseNet [35] 6.08ms 41MB
GoogleNet [66] 7.86ms 28MB
InceptionV3 [65] 31.2ms 93MB

Table 2. A list of models used in our evaluation benchmarks.
TVM Exec Time is the time to execute the model directly in
C++, without any serving infrastructure.

variation exists (e.g., due to contention between concurrent
kernels), empirically, this running average is good enough
for sorting the jobs according to their remaining time.

(2) Fairness. Paella also borrows inspiration from prior work
in its use of deficit counters [27, 64] to efficiently and effec-
tively constrain the SRPT-related unfairness between dif-
ferent users. Conceptually, when a kernel, 𝑖 , is scheduled,
its deficit decreases by (1 − 1

users) while the deficit of all
other users increases by 1

users . If any user’s deficit exceeds a
user-defined threshold, the oldest job of the client with the
highest deficit counter is chosen; otherwise, Paella uses (1).

(3) Full utilization.While Paella receives fine-grained in-
formation about current GPU utilization, in practice, there
is some communication delay between the GPU and the dis-
patcher. To ensure that the GPU is always saturated, Paella
will submit a configurable 𝐵 blocks beyond its full utilization.

Efficient implementation and overall strategy. Paella
tracks jobs’ (1) and (2) with a red-black tree for each. When
it detects the placement of sufficient blocks (using the mech-
anisms of Section 5.2) to reduce the hardware queue below
𝐵, Paella will dispatch a kernel of the job with either the
lowest remaining time (if under the unfairness threshold)
or the highest deficit (otherwise). It will repeat this until it
conservatively estimates sufficient outstanding kernels to
fully utilize at least one of the GPU’s resources (+𝐵).

Dispatching a kernel removes its job from both trees; the
job may be reinserted once another kernel is ready to ex-
ecute. For the deficit tree, reinsertion decreases the deficit
counter by 1 and shifts the original threshold by 1

jobs . This
shift converts an O(𝑛) deficit update into an O(1) operation,
though an O(𝑛) reset is required on double underflow.

7 Evaluation
Implementation. We implemented a prototype of Paella in
C++. Paella is built on top of existing tools such as TVM and
Boost co-routines. For the client library, dispatcher, and com-
piler modifications, Paella contains 4,221 lines of additional
C++ and CUDA code. The Paella dispatcher runs in Linux on
a designated core with real-time scheduling priority. In order
to use the system, clients adding a new model write only the
TVM model definition and the job adaptor of Section 4.2.

603

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

System Key Interface Dispatch Sched.

Single CUDA Stream CUDA-SS Direct job FIFO
Multiple CUDA Streams CUDA-MS Direct job CUDA
MPS MPS Direct job MPS
Clockwork [28] Clockwork Boost Asio job FIFO
Triton [52] Triton gRPC job CUDA

Paella w/ Single Stream Paella-SS mem channels job FIFO
Paella w/ Multiple Streams Paella-MS-jbj mem channels job CUDA
Paella w/ Multiple Streams Paella-MS-kbk mem channels kernel CUDA
Paella Paella mem channels kernel §6

Paella w/ Shortest-job-first Paella-SJF mem channels kernel SJF
Paella w/ Round-robin Paella-RR mem channels kernel RR

Table 3. Compared systems and variants. Triton’s scheduler
has additional features (e.g., cross-GPU or inter-backend),
but they are mostly orthogonal for our configurations.

Methodology. We evaluated our system on a server with a
2.2 GHz Xeon Silver 4114 CPU, 64GB RAM, and an NVIDIA
Tesla T4 GPU. The server runs Linux 4.15.0, CUDA 11.7, and
uses a modified version of TVM v0.10.0 as described above.
We also evaluated our system on a Tesla P100 but omitted
those results as the trends were identical.
The models we used are listed in Table 2 and are from

repositories of pre-trained models such as the ONNX Model
Zoo [5]. Unless specified otherwise, the request inter-arrival
pattern follows a lognormal distribution with either 𝜎 = 2
(bursty) or 𝜎 = 1.5 (less bursty) and varying mean, `.

In all cases, we waited for results to stabilize before gath-
ering measurements for any of the below experiments. This
eliminates transient start-up costs associated with Paella
provisioning and TVM runtime compilation.

Baselines. As baselines, we compare against several sys-
tems, all listed in Table 3. These include scenarios without
any serving system, where one or more processes directly
submit kernels to the CUDA runtime. They also include
three ablations of Paella that retain Paella’s frontend and dis-
patcher architecture but with trivial scheduling (one where
each model is dispatched to a single stream and a pair where
they are dispatched immediately to a unique CUDA stream,
differing in their dispatch granularity), as well as versions of
Paella with other simpler scheduling algorithms.
As a reference state-of-the-art model serving system, we

ran NVIDIA’s Triton v23.03. To ensure a fair comparison, we
used TVM as a backend. As this interaction is not supported
in Triton, we needed to implement a custom wrapper for
TVM graphs in a TensorFlow operation, which can then be
exported as a TensorFlow SavedModel. We also compared
baseline latency to Clockwork, but omitted them from larger
experiments as they are designed for predictability rather
than throughput (e.g., executing only one model at a time).

7.1 Paella Improves Inference Latency
We first evaluate whether and by how much Paella improves
the end-to-end latency of inference. Figure 10 shows a break-
down of the overheads incurred by Paella and the serving

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

Triton

Clockwork
Paella

P-MS-kbk
P-MS-jbj

P-SS
P-SJF

P-RR

T
im

e
 (

µ
s
)

Framework overhead
Queuing/scheduling

Communication latency
Client send/recv

Figure 10. A comparison of the overheads of Paella and its
(Multi/Single Stream) ablations versus Triton and Clockwork.
All network latency and CUDA execution time are excluded.

systems in Table 3 for a single MobileNet request. Paella
exhibits comparable latency in scheduling and framework
overheads to Triton (which uses a simple FIFO scheduler)
but less than Clockwork (which is split over separate con-
troller and worker processes and which expends effort to
offer high predictability); even compared to FIFO versions
of Paella, the latency is minimal. Its communication latency
(encompassing serialization and syscall overheads) is also
lower than Clockwork and significantly faster than Triton,
which is based on gRPC.

Paella under variable load. Under load, Paella increases its
advantage. Figure 11 shows the results for a uniform mix of
inference models (listed in Table 2), two levels of burstiness,
and the baselines in Table 33. We evaluate the p99 latency and
average throughput of requests. For all systems, we increased
the offered load until the systems reached saturation.

Compared to Triton, Paella maintains a lower latency base-
line and sustains 1–3 orders of magnitude higher through-
put before saturation. For these workloads and metrics, the
performance benefits stem primarily from Paella’s efficient
architecture, designed from first principles for minimal over-
head and ultra-low latency. As Paella’s default scheduling
policy is based on SRPT, its benefits to throughput (i.e., the
difference between Paella and the Paella-MSes) are modest.

Short vs. long jobs. Where Paella truly shines is in the
benefits of its scheduling improvements to different job sizes.
For this experiment, we pit ResNet-18 against InceptionV3,
which differ significantly in their size. Workloads are based
on the same lognormal distributions as above, and the ratio
of smaller to larger jobs is inversely proportional to their
size. Figure 12 shows that p99 ResNet-18 baseline latency
improves by up to 3× compared to CUDA-MS.

7.2 Paella Provides Tunable Scheduling
Using Paella, providers can implement and tune scheduling
policies that are independent of the GPU’s scheduler. For
example, the algorithm presented in Section 6 implements an

3We omit MPS in this experiment as it does not support more than seven
processes, and any aggregation would introduce significant confounding
effects. Instead, a comparison of Paella and MPS can be found in Figure 12.

604

Paella: Low-latency Model Serving with Software-defined GPU Scheduling SOSP ’23, October 23–26, 2023, Koblenz, Germany
𝝈

=
2

0

200

400

600

800

1000
ResNet-18 MobileNetV2 ResNet-34 SqueezeNet1.1 All

0 100 200 300 400
0

200

400

600

800

1000
ResNet-50

0 100 200 300 400

Densenet

0 100 200 300 400

GoogleNet

0 100 200 300 400

InceptionV3

CUDA-SS
CUDA-MS
Triton
Paella-SS
Paella-MS-jbj
Paella-MS-kbk
Paella-SJF
Paella-RR
Paella

p9
9

La
te

nc
y

(m
s)

𝝈
=
1.
5 0

200

400

600

800

1000
ResNet-18 MobileNetV2 ResNet-34 SqueezeNet1.1 All

0 100 200 300 400
0

200

400

600

800

1000
ResNet-50

0 100 200 300 400

Densenet

0 100 200 300 400

GoogleNet

0 100 200 300 400

InceptionV3

CUDA-SS
CUDA-MS
Triton
Paella-SS
Paella-MS-jbj
Paella-MS-kbk
Paella-SJF
Paella-RR
Paella

Average Throughput (req/s)

p9
9

La
te

nc
y

(m
s)

Figure 11. Average throughput versus p99 latency for a mix of inference models. Results are for two lognormal distributions.
Compared to other systems, Paella maintains a lower latency baseline and sustains higher throughput before saturation.

𝝈
=
1.
5

𝝈
=
2

0 100 200 300 400
0

200

400

600

800

1000
All

0 100 200 300 400

ResNet-18

0 100 200 300 400

InceptionV3

CUDA-SS
CUDA-MS
MPS
Paella-SS
Paella-MS-jbj
Paella-MS-kbk
Paella-SJF
Paella-RR
Paella

p9
9

La
te

nc
y

(m
s)

100 200 300 400
0

200

400

600

800

1000

100 200 300 400 100 200 300 400
Average Throughput (req/s)

p9
9

La
te

nc
y

(m
s)

Figure 12. Average throughput versus p99 latency for workloads with two models of differing sizes and two workload
distribution parameters. For both workload parameters, short jobs can benefit substantially from Paella’s SRPT-like algorithm.

SRPT-like strategy in which shorter and partially completed
jobs are prioritized over longer ones to achieve lower overall
latency. To counteract SRPT’s well-known issues with the
potential starvation of long jobs, it adds a fairness threshold.
Figure 13 demonstrates the effect of this fairness mecha-

nism and its threshold using a workload with two job types,
with one having 5× as many kernels to run. As we decrease
the fairness threshold, the deficit counter of the long jobs

triggers immediate scheduling earlier. As the threshold ap-
proaches zero, the system emulates Paella-SS.
In addition to FIFO and Paella’s default algorithm (a mix

of SRPT and deficit-based Priority Scheduling), we imple-
mented algorithms like shortest-job-first (SJF) and round-
robin (RR) to demonstrate the flexibility of Paella further.
The effects of these alternatives follow conventional wisdom.
For example, Figures 11 and 12 show that RR gives the larger
jobs a more fair share of resources, resulting in a different

605

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

 5

 6

 7

 8

 9

 10

 11

 12

 0 100 200 300 400 500

M
e

a
n

 L
a

te
n

c
y
 (

s
)

Less Fair <- Fairness Threshold -> More Fair

ResNet-18
InceptionV3

Figure 13. Mean latency for short (ResNet-18) and long
(InceptionV3) jobs versus the fairness threshold of Section 6.

 0

 20

 40

 60

 80

 100

Baseline Polling PaellaC
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Figure 14. The CPU utilization of a client submitting many
small jobs using various communication protocols. The base-
line is a simple Unix socket IPC.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

Execution Time (µs)

No-op (16 blks)
No-op (160 blks)
Paella no agg (16 blks)
Paella no agg (160 blks)
Paella (16 blks)
Paella (160 blks)

Figure 15. The overheads of Paella’s kernel instrumentation
with and without block aggregation. Execution time encom-
passes the time on the host between the initiation of the
kernel launch and the return from a synchronization barrier.

trade-off compared to our default algorithm or SJF.

7.3 Paella Incurs Low Overhead
Host-side overhead. To evaluate the CPU overhead of
Paella and the impact of its hybrid inter-process commu-
nication mechanism, we evaluate three different implemen-
tations: (1) a traditional Unix socket channel to coordinate
between the client and dispatcher, (2) unmitigated client
polling, and (3) Paella’s hybrid scheme. Into each system,
we send ∼6,700 requests per second of a small synthetic
model and sample client CPU utilization every 5ms. This
experiment represents an upper bound on the client load.

Figure 14 shows the results: the first two mechanisms sit
at extremes of CPU utilization, while in Paella, the client’s
average utilization is around 23%, a number that is dependent
on the fraction of time spent on the last operator compared
to the full job. Just as important, Paella does not sacrifice any
appreciable inference latency compared to polling, while the
baseline is, on average, ∼10% slower.

Device-side overhead. Finally, we evaluate the overhead
of Paella’s kernel instrumentation technique. To stress the
system and maximize the potential contention on the notifi-
cation queue, we test an instrumented empty kernel whose
only task is to enqueue placement/completion notifications
to the notifQ. We compare this kernel against a version that
omits the notification aggregation (notifying for every block)
as well as one that has not been instrumented.
Figure 15 shows CDFs of the execution times of all three

variants and two different kernel grid sizes. The notifications
alone add little overhead, even for 160 blocks (for 90-pct:
2.2µs). Adding a conditional to support aggregation adds
additional overhead (for 90-pct: 16 blocks, 5.5µs; 160 blocks,
6.6µs); however, the benefits to the dispatcher overhead
make the tradeoff worth it. We argue that these overheads
are acceptable for the benefits that instrumentation affords.

8 Discussion and Future Work
InteractionwithMulti-Instance GPUs and cluster-level
scheduling. GPU scheduling in modern data centers can
sometimes interact with surrounding mechanisms in com-
plex ways. Within a GPU, NVIDIA’s MIG can affect Paella’s
design by slicing a GPU’s resources into several partitions.
For known, static partitions, Paella’s techniques apply di-
rectly; the interaction between GPU scheduling and dynamic
repartitioning is a potentially fruitful direction for future
work. Across machines/GPUs, cluster-level scheduling de-
cisions can also impact Paella, even though Paella targets
lower-level scheduling decisions. For this, we refer users to
the rich literature on hierarchical scheduling—Paella enables
the direct application of these solutions.

Scaling to larger GPUs. As GPUs continue to grow in SM
count and memory capacity, we anticipate that the opportu-
nities for fine-grained multiplexing will also increase, e.g.,
to support legacy or parameter-efficient models. The more
kernel-level concurrency, the more scheduling is needed.
One possible concern is that software scheduling over-

heads may increase as scheduling becomes more complex;
however, Figure 9 demonstrates that Paella still has some
headroom before these overheads start to impact perfor-
mance. Note that Figure 9 uses modest Xeon Silver 4114
CPUs and MNIST, a model with 1000× smaller execution
time and size than the smallest model in Table 2, and thus,
it represents the worst case. Assuming MobileNet and the
same per-job dispatch overheads of Figure 10, job dispatch
rates could increase by ∼30× before significantly impacting
Paella’s throughput.

Dynamic batching. As mentioned in Section 2.2, the dy-
namic batching used in many of today’s serving frameworks
is detrimental to critical-path request latency because of its
need to wait for additional requests and copy input data
into a batched format. We note, however, that at high loads

606

Paella: Low-latency Model Serving with Software-defined GPU Scheduling SOSP ’23, October 23–26, 2023, Koblenz, Germany

where throughput bottlenecks contribute to latency, the effi-
ciency gains may make batching worth performing. Paella
can be extended to detect saturation and batch in these cases,
but it currently does not as TVM does not support dynamic
batching (because it conflicts with TVM’s autotuning opti-
mizations and substantially reduces performance).

GPU vendor support. Paella enables the implementation
of scheduling algorithms in software. While GPU hardware
schedulers could implement any particular scheduling algo-
rithm more efficiently, a software solution has an advantage
in enabling extremely flexible scheduling, which, as men-
tioned at the end of Section 1, cannot be replaced by any sin-
gle hardware-implemented scheduling algorithm. We note
that a promising direction is to co-design the software sched-
uler with the GPU hardware. We leave this exploration to
future work, but we believe the core of Paella’s transparency
(visibility into scheduling decisions) is necessary regardless.

Pre-compiled kernels.While Paella requires users to sub-
mit their job definitions with the original source code, we
note that pre-compiled ML binaries, such as the popular
cuDNN library may also be adapted to Paella. In particu-
lar, the simplicity of Paella’s device code transformations
and their independence to application logic means that, in
principle, the instrumentation can be added via static binary
translation. Unfortunately, the key hurdle is not technical:
EULAs for these libraries often disallow reverse engineering,
decompilation, or disassembly. Instead, we anticipate that
vendors could publish instrumented, compatible versions of
library functions for use in the Paella framework.

9 Related Work
Model serving frameworks. Paella builds on prior model
serving frameworks [18, 19, 29, 44, 52, 54, 63]. These sys-
tems have made significant progress in lowering the latency
and raising the throughput of inference. Clipper [19], Cock-
tail [29], and INFaaS [61], for instance, adaptively select
model variants and introduce related optimizations in au-
toscaling, caching, and batching of their execution. These
types of techniques, typically implemented a layer above
the actual model execution frameworks, are complementary
to Paella. Instead, Paella attempts to address deficiencies in
the GPU hardware scheduler, which requires a co-design of
CUDA kernels and model serving.

We note that a subset of this work also targets low-latency
through better scheduling and dispatching protocols; how-
ever, because of the traditional opacity of the GPU scheduler,
many assume only a single model is running on the GPU at a
given time [8, 28, 34, 47, 72]. Rammer [47], for instance, takes
an individual job and, at compile time, determines the opti-
mal intra-job schedule among parallelizable operators within
a job. They then use a persistent thread primitive to (like
Paella) avoid the GPU scheduler and enforce their optimized
schedule. When models are large enough to fully occupy

the GPU on their own and scheduler pre-emption of jobs is
not required, Rammer may be sufficient; however, a more
dynamic solution like Paella is necessary when multiplexing
is necessary and inter-job effects matter.

Real-time inference. Also relevant is a large body of work
in the real-time community [50]. In fact, it is from this work
where much of our understanding of GPU scheduling poli-
cies stems [7, 9, 57]. In terms of solutions, however, real-time
systems attempt to eliminate as much overhead and uncer-
tainty as possible to ensure that tasks are completed within
some specified time constraint (hard or soft). Our work is in-
spired by these earlier systems [12, 13, 24, 48, 49, 67], but we
take a markedly different approach in our treatment of dead-
lines and/or target use cases. For example, Clockwork [28]
is a recent system that leverages the predictability of typical
ML kernels in order to provide hard real-time guarantees.
In exchange for this predictability, only a single model can
run on a given GPU at a time. Paella targets a different point
in the design space, opting to maximize GPU occupancy for
high throughput and minimize JCT given that constraint.

GPU scheduling.We note that other work has previously
examined the problem of GPU scheduling. Many of these
systems have proposed modifications to the GPU or dri-
vers themselves in order to improve block/warp schedul-
ing [26, 51, 58]; Paella’s approach is mostly orthogonal to
these improvements as long as placement is roughly pre-
dictable. Others have advocated for alternative program-
ming models [11, 74] or scheduling algorithms for kernel
dispatch [32, 40, 47] with the goal of promoting higher GPU
utilization. To the best of our knowledge, Paella is the first
to leverage thread-block instrumentation to softwareize the
scheduling decisions of GPUs.

In-memory channels. Finally, we note that other systems,
particularly those that provide kernel bypass for storage
and networking, also use in-memory channels to great ef-
fect [73]. For example, ReFlex [42] demonstrated managing
in-memory channels for clients can scale to thousands of
tenants. Paella is complementary and can leverage the opti-
mizations and abstractions introduced by these systems.

10 Conclusion
In this paper, we (1) show that existing serving systems are
hamstrung by these components; (2) present a technique to
lift scheduling responsibilities out of the GPU hardware and
into software through a co-design of the compiler, kernel
instrumentation, and an efficient dispatcher; and (3) demon-
strate its utility with a useful scheduling algorithm on top of
Paella. In addition to software-defined scheduling, Paella’s
dispatcher includes optimizations such as shared-memory
communication channels, co-routine multiprocessing, and
optimized placement heuristics to achieve performance ben-
efits for diverse workloads.

607

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

Acknowledgments
We gratefully acknowledge our shepherd Lin Zhong and the
anonymous SOSP reviewers for all of their help and thought-
ful comments. This work was funded in part by Google, Meta,
VMWare, and NSF grants CNS-1845749 and CNS-2107147.

References
[1] NVIDIA HyperQ. https://docs.nvidia.com/cuda/samples/6_Advanced/

simpleHyperQ/doc/HyperQ.pdf.
[2] NVIDIA MPS. https://docs.nvidia.com/deploy/mps/index.html.
[3] NVRTC (Runtime Compilation). https://docs.nvidia.com/cuda/nvrtc/

index.html.
[4] Parallel Thread Execution ISA). https://docs.nvidia.com/cuda/parallel-

thread-execution/index.html.
[5] Onnx model zoo, 2020. https://github.com/onnx/models.
[6] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. Cherrypick: Adaptively
unearthing the best cloud configurations for big data analytics. In
Proceedings of the 14th USENIX Conference on Networked Systems Design
and Implementation, NSDI’17, pages 469–482, Berkeley, CA, USA, 2017.
USENIX Association.

[7] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. Gpu
scheduling on the nvidia tx2: Hidden details revealed. In 2017 IEEE
Real-Time Systems Symposium (RTSS), pages 104–115, 2017.

[8] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. Pipeswitch: Fast
pipelined context switching for deep learning applications. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 499–514. USENIX Association, November 2020.

[9] J. Bakita, Nathan Otterness, J. Anderson, and F. D. Smith. Scaling up:
The validation of empirically derived scheduling rules on NVIDIA
GPUs. In 14th Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT), 2018.

[10] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating
system for high throughput and low latency. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14),
pages 49–65, Broomfield, CO, October 2014. USENIX Association.

[11] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru.
Deadline-based scheduling for gpu with preemption support. In 2018
IEEE Real-Time Systems Symposium (RTSS), pages 119–130, 2018.

[12] A. X. M. Chang and E. Culurciello. Hardware accelerators for recurrent
neural networks on fpga. In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–4, 2017.

[13] G. Chen and X. Shen. Free launch: Optimizing gpu dynamic kernel
launches through thread reuse. In 2015 48th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), pages 407–419,
2015.

[14] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. Auto: Scaling
deep reinforcement learning for datacenter-scale automatic traffic
optimization. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, page 191–205,
New York, NY, USA, 2018. Association for Computing Machinery.

[15] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated
end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, Carlsbad, CA, October 2018. USENIX Association.

[16] CN Coelho, A Kuusela, S Li, H Zhuang, T Aarrestad, V Loncar, J Nga-
diuba, M Pierini, AA Pol, and S Summers. Automatic deep heteroge-
neous quantization of deep neural networks for ultra low-area, low-
latency inference on the edge at particle colliders. arXiv preprint
arXiv:2006.10159.

[17] Intel Corporation. Intel 64 and ia-32 architectures software developer’s
manual volume 3a: System programming guide, 2021.

[18] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion
Stoica, Joseph Gonzalez, and Alexey Tumanov. Inferline: Latency-
aware provisioning and scaling for prediction serving pipelines. In
Proceedings of the 11th ACM Symposium on Cloud Computing, SoCC ’20,
page 477–491, New York, NY, USA, 2020. Association for Computing
Machinery.

[19] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 613–627, Boston,
MA, March 2017. USENIX Association.

[20] Martijn de Rooij. Ultra low latency deep neural network inference for
gravitational waves interferometer. 2021.

[21] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. When idling
is ideal: Optimizing tail-latency for heavy-tailed datacenter workloads
with perséphone. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page 621–637, New York,
NY, USA, 2021. Association for Computing Machinery.

[22] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu,
Boon Thau Loo, and Linh Thi Xuan Phan. Detecting asymmetric
application-layer denial-of-service attacks in-flight with finelame. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
693–708, Renton, WA, July 2019. USENIX Association.

[23] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward
Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan
Rivera, Nhan Tran, et al. Fast inference of deep neural networks in
fpgas for particle physics. Journal of Instrumentation, 13(07):P07027,
2018.

[24] Glenn A. Elliott and James H. Anderson. Real-world constraints of
gpus in real-time systems. In Proceedings of the 2011 IEEE 17th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications - Volume 02, RTCSA ’11, page 48–54, USA, 2011. IEEE
Computer Society.

[25] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 281–297. USENIX Association, November 2020.

[26] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp
formation and scheduling for efficient gpu control flow. In 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007),
pages 407–420, 2007.

[27] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Ja-
nardhan Kulkarni. Graphene: Packing and dependency-aware schedul-
ing for data-parallel clusters. OSDI’16, page 81–97, USA, 2016. USENIX
Association.

[28] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. Serving dnns like clock-
work: Performance predictability from the bottom up. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 443–462. USENIX Association, November 2020.

[29] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R. Das.
Cocktail: A multidimensional optimization for model serving in cloud.
In 19th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 22), pages 1041–1057, Renton, WA, April 2022.
USENIX Association.

[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[31] GeoffreyHinton, Oriol Vinyals, and JeffDean. Distilling the knowledge
in a neural network. NIPS Deep Learning and Representation Learning

608

https://docs.nvidia.com/cuda/samples/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://docs.nvidia.com/cuda/samples/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/cuda/nvrtc/index.html
https://docs.nvidia.com/cuda/nvrtc/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://github.com/onnx/models

Paella: Low-latency Model Serving with Software-defined GPU Scheduling SOSP ’23, October 23–26, 2023, Koblenz, Germany

Workshop, 2015.
[32] Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos. Gpu

virtualization and scheduling methods: A comprehensive survey. ACM
Comput. Surv., 50(3), June 2017.

[33] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

[34] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swapping. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’20, page 1341–1355, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[35] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Wein-
berger. Densely connected convolutional networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2261–2269, 2017.

[36] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mbmodel size. CoRR, abs/1602.07360,
2016.

[37] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza.
Dissecting the nvidia turing t4 gpu via microbenchmarking, 2019.

[38] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for `second-scale tail latency. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), pages 345–
360, Boston, MA, February 2019. USENIX Association.

[39] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs
can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 1–16, Boston, MA,
February 2019. USENIX Association.

[40] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka
Ishikawa. Timegraph: Gpu scheduling for real-time multi-tasking envi-
ronments. In Proceedings of the 2011 USENIX Conference on USENIX An-
nual Technical Conference, USENIXATC’11, page 2, USA, 2011. USENIX
Association.

[41] Charles W. Kazer, João Sedoc, Kelvin K.W. Ng, Vincent Liu, and Lyle H.
Ungar. Fast network simulation through approximation or: How blind
men can describe elephants. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks, HotNets ’18, page 141–147, New York, NY,
USA, 2018. Association for Computing Machinery.

[42] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote
flash ∼ local flash. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, page 345–359, New York, NY, USA,
2017. Association for Computing Machinery.

[43] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Poly-
zotis. The case for learned index structures. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD ’18,
page 489–504, New York, NY, USA, 2018. Association for Computing
Machinery.

[44] Redis Labs and Tensorwerk. Redisai, 2020. https://github.com/RedisAI/
RedisAI.

[45] Griffin Lacey, Graham W. Taylor, and Shawki Areibi. Deep learning
on fpgas: Past, present, and future, 2016.

[46] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash.
Discretization: An enabling technique. Data Mining and Knowledge
Discovery, 6(4):393–423, December 2002.

[47] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui,WenxiangHu, Fan Yang, Lintao Zhang, and Lidong Zhou. Rammer:
Enabling holistic deep learning compiler optimizations with rTasks.
In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 881–897. USENIX Association, November

2020.
[48] K. V. Manian, A. A. Ammar, A. Ruhela, C.-H. Chu, H. Subramoni, and

D. K. Panda. Characterizing cuda unified memory (um)-aware mpi de-
signs on modern gpu architectures. In Proceedings of the 12thWorkshop
on General Purpose Processing Using GPUs, GPGPU ’19, page 43–52,
New York, NY, USA, 2019. Association for Computing Machinery.

[49] Michele Martinelli. Poster: Gpu i/o persistent kernel for latency bound
systems. In ACM Symposium on High-Performance Parallel and Dis-
tributed Computing, 2017.

[50] Pınar Muyan-Özçelik and John D. Owens. Methods for multitasking
among real-time embedded compute tasks running on the gpu. Con-
currency and Computation: Practice and Experience, 29(15):e4118, 2017.
e4118 cpe.4118.

[51] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Mif-
takhutdinov, OnurMutlu, and Yale N. Patt. Improving gpu performance
via large warps and two-level warp scheduling. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44, page 308–317, New York, NY, USA, 2011. Association for
Computing Machinery.

[52] NVIDIA. Triton inference server, 2020. https://github.com/triton-
inference-server/server.

[53] Ignacio Sañudo Olmedo, Nicola Capodieci, Jorge Luis Martinez, An-
drea Marongiu, and Marko Bertogna. Dissecting the cuda schedul-
ing hierarchy: a performance and predictability perspective. In 2020
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 213–225, 2020.

[54] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril
Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
Tensorflow-serving: Flexible, high-performance ml serving. In Work-
shop on ML Systems at NIPS 2017, 2017.

[55] AaronOord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals,
Koray Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo,
Florian Stimberg, et al. Parallel wavenet: Fast high-fidelity speech
synthesis. In International conference on machine learning, pages 3918–
3926. PMLR, 2018.

[56] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang. An evaluation of the nvidia tx1 for supporting
real-time computer-vision workloads. In 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 353–
364, 2017.

[57] Sreepathi Pai. How the fermi thread block scheduler works (illustrated),
Mar 2014. https://cs.rochester.edu/~sree/fermi-tbs/fermi-tbs.html.

[58] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das. Sched-
uling techniques for gpu architectures with processing-in-memory
capabilities. In Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, PACT ’16, page 31–44, New
York, NY, USA, 2016. Association for Computing Machinery.

[59] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked tasks. In Proceed-
ings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
page 325–341, New York, NY, USA, 2017. Association for Computing
Machinery.

[60] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, Antonio
Nucci, and Edward Knightly. Ddos-shield: Ddos-resilient scheduling to
counter application layer attacks. IEEE/ACM Trans. Netw., 17(1):26–39,
February 2009.

[61] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. INFaaS: Automated model-less inference serving. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 397–411.
USENIX Association, July 2021.

[62] A. Shawahna, S. M. Sait, and A. El-Maleh. Fpga-based accelerators of
deep learning networks for learning and classification: A review. IEEE
Access, 7:7823–7859, 2019.

609

https://github.com/RedisAI/RedisAI
https://github.com/RedisAI/RedisAI
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://cs.rochester.edu/~sree/fermi-tbs/fermi-tbs.html

SOSP ’23, October 23–26, 2023, Koblenz, Germany Kelvin K.W. Ng, Henri Maxime Demoulin, and Vincent Liu

[63] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:
A gpu cluster engine for accelerating dnn-based video analysis. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 322–337, New York, NY, USA, 2019. Association for
Computing Machinery.

[64] M. Shreedhar and George Varghese. Efficient fair queueing using
deficit round robin. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’95, page 231–242, New York, NY, USA, 1995. Association
for Computing Machinery.

[65] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826,
Los Alamitos, CA, USA, jun 2016. IEEE Computer Society.

[66] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Computer Vision and
Pattern Recognition (CVPR), 2015.

[67] Concurrent Real-Time Linux Development Team. Real-time perfor-
mance during cuda. Technical report, Concurrent Real-Time, 11 2010.

[68] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible?
Operations research, 60(5):1249–1257, 2012.

[69] Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-
generated congestion control. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages 123–134, New

York, NY, USA, 2013. ACM.
[70] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,

K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao,
B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine learning at
facebook: Understanding inference at the edge. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pages 331–344, 2019.

[71] Nofel Yaseen, John Sonchack, and Vincent Liu. tpprof: A network
traffic pattern profiler. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 1015–1030, Santa
Clara, CA, February 2020. USENIX Association.

[72] Peifeng Yu andMosharaf Chowdhury. Salus: Fine-grainedGPU sharing
primitives for deep learning applications. CoRR, abs/1902.04610, 2019.

[73] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max Demoulin,
Piali Choudhury, and Anirudh Badam. The demikernel datapath os
architecture for microsecond-scale datacenter systems. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, page 195–211, New York, NY, USA, 2021. Association for
Computing Machinery.

[74] J. Zhong and B. He. Kernelet: High-throughput gpu kernel executions
with dynamic slicing and scheduling. IEEE Transactions on Parallel
and Distributed Systems, 25(6):1522–1532, 2014.

610

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 GPUs and Mismatched Scheduling Policies
	2.2 Framework Overheads

	3 Design Overview
	4 Transforming CUDA Kernels and Jobs
	4.1 Device-side Resource Tracking
	4.2 Host-side CUDA Emulation

	5 The Paella Dispatcher
	5.1 The Client to Paella Channel
	5.2 The Paella to GPU Channel
	5.3 The GPU to Client Channel

	6 Scheduling Strategy
	7 Evaluation
	7.1 Paella Improves Inference Latency
	7.2 Paella Provides Tunable Scheduling
	7.3 Paella Incurs Low Overhead

	8 Discussion and Future Work
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

