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Abstract
In this paper, we focus on an often-overlooked component
of serverless application cold starts: monetary costs and
Function Initialization. Traditionally considered the user’s
responsibility, Function Initialization is billable and accounts
for more than 50% of the monetary cost associated with cold
starts in real-world machine-learning applications.
We introduce 𝐿!"#$%, a system that optimizes Python

serverless applications by eliminating redundant code while
maintaining correctness. To maximize cost savings, 𝐿!"#$%
leverages the typical serverless pricing model to prioritize
modules that signi!cantly impact latency and memory us-
age. 𝐿!"#$% features an automated pipeline comprising a
static analyzer, a pro!ler specialized for the serverless pric-
ing model, and a debloater. The optimized application can
be directly deployed on serverless platforms, leading to sub-
stantial reductions in both latency and cost for cold starts.
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Figure 1. A typical breakdown of cold and warm starts for a
PyTorch ResNet invocation and the average execution time
of each phase. Function Initialization is responsible for up to
29% of total latency and 45% of the total bill in a cold start.

1 Introduction
Serverless computing is an increasingly popular paradigm
that allows clients to run their applications on cloud providers
without worrying about the prosaic but complex tasks of pro-
visioning, scaling, and maintaining VMs or containers [26].
Under the serverless abstraction, users provide a function to
the cloud provider, which handles everything else automati-
cally. The user is then billed per-MB of provisioned memory,
per-millisecond1 of request processing time; they only pay
for what they use. Idle time is free.

The lifecycle of a serverless function, depicted in Figure 1,
consists of three phases: instance/runtime setup time, Func-
tion Initialization, and Function Execution. User logic is pri-
marily contained within the Function Execution stage.

In this work, we call attention to, quantify, and address the
fact that, among these stages, Function Initialization plays
an outsized role in the overhead of serverless computing.
Even though this stage is not executed for every request, its
costs can be substantial, both in latency and resources, the
latter of which manifests as higher monetary costs to users.

One way that Function Initialization adds overhead is dur-
ing so-called cold starts, where the cloud platform is forced to
initialize—in the critical path—a new serverless instance in
response to an incoming request and insu"cient existing ca-
pacity. This contrasts warm starts, where the cloud provider
can reuse a previously initialized VM/container. As many
others have also noted [23, 30, 45], these cold starts can be
common for some applications, and their latency penalty
can be substantial, accounting for up to an 80% increase
in latency compared to warm function execution. Within
1AWS Lambda pricing granularity. GCP rounds up to the nearest 100ms,
and Azure rounds up to the nearest 1 s.
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cold starts, Function Initialization is of particular concern
given trends towardmore/heftier libraries (e.g., ML, scienti!c
computing, and image/video processing) [35] and scale-out
architectures that lead to very bursty work- loads [21].
In addition to latency, Function Initialization also di#ers

from other cold-start components in that cloud providers typ-
ically bill users for the time, as shown in Figure 12. There are
good reasons for this pricing strategy: not billing for initial-
ization could result in perverse incentives, e.g., users break-
ing up expensive computations into a sequence of𝑀 functions
where each does 1

𝐿 of the computation, and stores/loads par-
tial results—the billable work would be a no-op. The result,
however, is that for the ResNet application of Figure 1, ini-
tialization can be responsible for up to 45% of the total bill.

Finally, the overheads of Function Initialization can persist
even after the instance has been warmed, as large libraries
and data structures instantiated during initialization will
continue to occupy memory even if they are never used,
consuming resources that again manifest as high monetary
costs for every user request.

Prior work has looked at parts of this problem, especially
through the lens of optimizing cold start latency, e.g., through
OS improvements [6, 11, 20], better function scheduling [13,
32, 44, 45, 55], checkpoint/restore techniques [20, 46], and
others. Unfortunately, a !xation on just one part of the prob-
lem, like cold start latency, can lead to tradeo#s on the other
aspects (e.g., the resource costs of checkpoint/restore tech-
niques that are detailed in Section 8.6). The few approaches
that target both latency and monetary cost are largely man-
ual (e.g., developing lightweight libraries [47] or relatively
simple methods to refactor the application [30, 48, 50]).

This paper presents 𝐿!"#$%, a system that optimizes Python
serverless applications by pro!ling and eliminating unnec-
essary initialization operations. 𝐿!"#$%’s optimizations min-
imize the latency of cold starts and the monetary cost of
both cold and warm executions. 𝐿!"#$% operates entirely
as a pre-processing step at the application level—its output
is an optimized serverless application with a shorter Func-
tion Initialization phase and less memory footprint. It is,
thus, immediately deployable and remains compatible with
system-level e#orts toward cold start optimization.

Under the hood, 𝐿!"#$% leverages a well-known technique
from the programming languages and software engineering
!elds, Delta Debugging (DD) [53]. DD takes a divide-and-
conquer approach to !nding the largest subset of the code
base that it can remove while producing correct results. In
each iteration, DD splits the program into multiple subsec-
tions and examines each subsection to determine whether
it is necessary for correct execution, repeating the process
until it reaches a minimal con!guration.

2As we discuss in Section 2.1, some functions’ initialization is complimen-
tary, but this is not true in general.

Unfortunately, applying DD to every line of code in the
serverless function and its dependencies is impractical. A
contribution of 𝐿!"#$% is, thus, to leverage typical server-
less pricing models (via an estimate of marginal monetary
cost) to enable e"cient targeting of DD-based debloating.
𝐿!"#$%’s system architecture features an automated pipeline
encompassing a static analyzer, serverless cost pro!ler, and
DD-based debloater. Our key contributions are as follows:
• We analyze the latency and cost breakdown and !nd the
initialization phase to be a signi!cant overhead in many
serverless Python applications.

• Wedemonstrate—empirically—the substantial redundancy
in those initialization phases with 𝐿!"#$%.

• As part of 𝐿!"#$%, we introduce the !rst practical ad-
vanced Python debloater using a work$ow specialized
for serverless platforms and their unique pricing models.

• We evaluate 𝐿!"#$% on real serverless applications and
reduce monetary costs by an average of ↑20% (cutting
many applications’ costs by >50%) while also improving
E2E latency by up to 2↓ and memory usage by up to 42%.

2 Background and Motivation
In traditional cloud computing models, users are responsible
for a wide range of system administration tasks not directly
related to their application logic, e.g., provisioning a batch of
VMs, specifying their resource pro!les, deploying dependen-
cies, scaling the instance up and down with the workload,
and monitoring the application as it runs, among others.
Serverless computing is an alternative that promises to

free users from all the above concerns. Instead, users sim-
ply supply the cloud provider with a function containing
their application’s logic (commonly known as the serverless
function or lambda). The provider handles the rest.

This abstraction o#ers many bene!ts, including: (1) users
are relieved from the need to manage servers, (2) resources
are automatically scaled based on demand, and (3) users are
billed for only the resources they use and no more. This
paradigm has proven popular, with all large cloud providers
o#ering a range of options for serverless execution (e.g., AWS
Lambda, GCP Cloud Run functions, and Azure Functions).

The work$ow for developing such applications is straight-
forward. Users write a function in their preferred program-
ming language, package the function code and any necessary
libraries into a suitable format (e.g., a container image or
ZIP !le), and then upload it to the serverless platform. The
serverless platform manages provisioning and execution.

2.1 The Anatomy and Pricing of Lambda Execution
Lambdas are executed on-demand, invoked by a prede!ned
set of triggers such as incoming HTTP requests, event trig-
gers (e.g., a !le upload or monitoring alert), and scheduled
timers. Serverless platforms ensure automatic scaling by dy-
namically launching new instances to handle invocations
and shutting them down when they are no longer needed.
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Cold/warm starts. As a result of dynamic scaling, when an
incoming request is received after a period of inactivity or
as part of a burst that exceeds the capacity of the currently
deployed instances, the invocation incurs what is known as
a cold start. In a cold start, the cloud provider must initial-
ize a new VM, including loading the runtime environment,
loading dependencies, initializing the application code, and
establishing connections (e.g., to databases). Partly because
of its advantage in cold-start latency (on top of their ease
of use and popularity), interpreted languages like Python
remain the most popular choices for serverless runtimes [18].
Once a serverless instance is initialized, the instance re-

mains active for a keep-alive period that is reset on a new
request to the instance in question. In AWS Lambda, the
keep-alive period is up to ↑45–60min, but potentially much
less depending on the size of the instance and resource avail-
ability [31]; in GCP, the period is ↔15min. If another request
arrives during this period and the instance is not already
processing a request, it can execute the new request without
repeating initialization, resulting in a warm start.
Pricing. Most serverless platforms employ a pricing model
based on both the memory usage of the application and the
duration for which the serverless function runs. Allocation
of other resources like CPU and network bandwidth depends
on the cloud provider and speci!c pricing plan. AWS, for in-
stance, allocates both resources proportionately to the mem-
ory footprint, with additional vCPUs assigned at designated
memory allocation breakpoints. Azure allocates a !xed CPU
and memory (100ACU and 1.5GB) budget per function in-
stance, with additional con!guration options for premium
hosting plans, while GCP allows independent con!guration
of CPU/memory in their v2 API.
For a given invocation, the pricing is thus primarily de-

termined by the footprint and duration of the function. For
example, AWS Lambda charges users as follows:

C = Con!gured Memory ↓ Billed Duration ↓ Unit Price (1)

In AWS Lambda, billing is computed in 1ms increments [10],
and memory con!gurations range from 128MB to 10GB.
Con!guring the memory too large is a waste of resources
and money. Con!guring it too small would result in memory
swapping, which can degrade server performance. The billed
duration would signi!cantly increase in this case, hurting
both latency and cost. As a result, the optimal con!guration
should be above the application’s peak memory footprint.
As shown in Figure 1, the billed duration of cold starts

generally includes both Function Initialization and Function
Execution3. In short, everything involved with executing the
container image uploaded by the user is billed. In contrast,
the cloud platform is responsible for the preparation process,
3The exception is functions on AWS Lambda that use zipped code on man-
aged runtimes and initialize in <10 s [49]. Initialization is not charged for
these functions, but AWS imposes size restrictions on the zipped code that
are impractical for the types of applications we consider here.

Time (s)

Application External modules Size (MB) Import Exec E2E

From FaaSLight [30]

huggingface torch, transformers 799.38 5.52 0.86 10.12
image-resize boto3, wand.image 102.05 0.42 0.95 1.88
lightgbm lightgbm, numpy 120.22 0.57 0.04 1.14
lxml requests, lxml 58.01 0.24 0.39 1.12
scikit sklearn 177.01 0.30 0.01 1.93
skimage skimage 155.37 1.87 0.10 2.76
tensor!ow tensorflow, numpy 586.13 4.53 0.04 5.33
wine numpy, pandas, sklearn, boto3 271.01 1.96 0.29 2.81

From RainbowCake [51]

dna-visualization squiggle 57.01 0.18 0.02 0.72
"mpeg ffmpeg 297.00 0.06 2.50 3.07
igraph igraph 40.00 0.09 0.01 0.59
markdown markdown 32.21 0.04 0.03 0.54
resnet numpy, torch, PIL 742.56 6.30 5.30 11.71
textblob textblob 104.00 0.42 0.38 1.28

New Applications

chdb-olap chdb 293.64 1.01 0.08 1.77
epub-pdf reportlab, pptx, docx, boto3 143.68 0.62 1.43 2.54
jsym sympy 83.01 0.56 0.31 1.36
pandas numpy, pandas 114.27 0.67 0.01 1.19
qiskit-nature qiskit_nature 281.15 1.96 0.49 3.05
shapely-numpy numpy, shapely 58.42 0.20 0.01 0.71
spacy spacy, boto3 202.00 2.06 0.02 2.60

Table 1. Benchmarked applications

including setting up the physical server and downloading the
application image from a storage server. Time spent in this
stage is re$ected in the E2E latency but will not appear on the
bill. As such, serverless platforms are strongly incentivized
to optimize this phase but are much less motivated to help
users reduce Function Initialization costs.

2.2 Function Initialization in the Wild
To investigate the overheads of Function Initialization, we
study real serverless applications. We conduct our experi-
ments on AWS Lambda using a Python 3.10 runtime.

2.2.1 Benchmarked Applications
We collect a comprehensive set of serverless applications
by constructing a union of applications used in other work,
namely FaaSLight [30] and RainbowCake [51]. To augment
this set of applications, for some of the 20 largest and most
popular packages in PyPI [34] (excluding nightly versions),
we select a representative, real-world, and open-source server-
less application found via GitHub search and add it to the
union as well. Finally, we remove any repetitive applications
that implement similar tasks. We prioritize applications that
are the most recent and have clear instructions to run. For
example, a machine learning image classi!cation application
that uses PyTorch appears in all three of our sources, and we
keep the RainbowCake version.
Our !nal serverless application set consists of 21 real-

world applications from FaaSLight (8), RainbowCake (7),
and PyPI (6). The FaaSLight and RainbowCake benchmarks
contain 15 and 10 Python applications, respectively.
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Figure 2. Billed duration (left bar) and monetary cost (right bar) of cold starts for each serverless application. The billed
duration, priced for 100K invocations, is further divided into Function Initialization (Import) and Function Execution (Exec)
time. The label on the bar is the percentage of import time out of the total billed duration.

Algorithm 1 The generic Delta Debugging algorithm.
Require: Program 𝑁 , Oracle O

Ensure: 1-minimal program 𝑁 ↗ s.t. O(𝑁 ↗
) = T

1: 𝑂 ↘ list of program components of 𝑁
2: 𝐿 ↘ 2
3: repeat
4: ≃𝑃1, . . . ,𝑃𝐿 ⇐ ↘ split 𝑂 into 𝐿 partitions
5: if ⇒𝑄 . O(𝑃𝑀 ) = T then
6: ≃𝑂,𝐿⇐ ↘ ≃𝑃𝑀 , 2⇐
7: else if ⇒𝑄 . O(𝑂 \ 𝑃𝑀 ) = T then
8: ≃𝑂,𝐿⇐ ↘ ≃𝑂 \ 𝑃𝑀 ,𝐿 ⇑ 1⇐
9: else
10: ≃𝑂,𝐿⇐ ↘ ≃𝑂, 2𝐿⇐
11: end if
12: until 𝐿 ↔ |𝑂 |

13: return 1-minimal 𝑁 ↗

2.2.2 Metrics
We invoke the above collection of serverless applications
and collect their latency and monetary cost. We focus on
cold starts, which include all phases of execution.
Latency. End-to-end cold start latency (E2E) is the duration
between the issue of a user request and the response from
AWS Lambda. E2E latency can be further broken down into
the four phases in Figure 1 [30], but pay particular attention
to the two phases under the control of users: Function Initial-
ization and Function Execution. We collect Function Initial-
ization (Import) latency by instrumenting the benchmarked
applications with recorded timestamps before and after the
Lambda initialization code block. AWS directly reports the
Function Execution latency. We report Import, Execution,
and E2E latency of each application in Table 1.
Monetary cost. As discussed in Section 2.1, AWS Lambda
charges each invocation based on both billed duration and
con!gured memory. Although it is possible to con!gure
128MB to 10GB memory for any serverless application on
AWS Lambda, for the best cost-e#ectiveness, the memory
should be set proportional to the memory footprint [9]. As
a lower bound, we report the measured maximum memory
footprint of the application for a single request—in practice,
there will be some additional headroom. We set memory to

Python 
Program

Test Case 
Oracle

Debloating 
(DD)ProfilingStatic 

Analysis

Debloated 
Program

Figure 3. Architecture of 𝐿!"#$%, which includes three com-
ponents: a static analysis phase, a pro!ler, and a debloater.

128MB in cost calculation if the measured memory is less.
We report the monetary cost for 100K invocations, calculated
using the unit price of $0.0000162109 per GB per second [10].

2.2.3 The Overheads of Function Initialization
The results of our measurement study are shown in Figure 2.
Across all applications, we !nd that Function Initialization
time accounts for a disproportionate fraction of cold start
latency. Especially when considered as a fraction of billed
duration, initialization time is often greater than the actual
function execution time, with the worst o#enders (i.e., spacy
and tensor!ow) spending >90% of their billed duration on
initialization tasks. The median share for initialization tasks
is 53.75%, but the proportion is generally higher for larger
applications (e.g., resnet and huggingface, which spend
62% and 65% of their billed duration on imports, respectively).
We note that the actual impact of Function Initialization

on monetary cost is much higher than the contribution to
latency reported here since (as we will see in Section 8.1)
the initialization tasks also lead to additional memory allo-
cations that must be carried through the life of the function.
Thus, when a serverless application—typically consisting
of a single, focused task [50]—imports a large library with
modules that will never be used in the execution phase (e.g.,
importing the forward pass of a neural network model but
getting a more general de!nition of the model), the impact
on monetary costs is outsized.

3 Related Work and Approach
3.1 Related Work in Serverless Optimization
The majority of work in optimizing serverless functions
focuses on cold start latencies.
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One approach is to optimize the serverless infrastructure
itself, e.g., through many of the techniques cited in Section 1
such as OS improvements [6, 11, 20], optimized function
scheduling [13, 32, 44, 45, 55], checkpoint/restore [20, 46],
caching [14, 15, 23, 51], provisioned concurrency [2], pre-
warming [38, 45] and memory/resource sharing [28, 29, 42].
Of these, checkpoint/restore (C/R) is of particular note as it
directly accelerates the Function Initialization phase. Check-
pointing involves saving the runtime state of a serverless
function after initialization, including memory, execution
context, intermediate computations, or even a snapshot of
the whole VM. During a cold start, the serverless platform
can restore from the checkpoint instead of starting from
scratch. Unfortunately, as we will see in Section 8.6, they
come with a cost, and that cost is being exacerbated by
the same trends that motivate this work: trends toward
more/heftier libraries and scale-out architectures—aggregate
checkpoint sizes grow in both cases.
More generally, the drawback of framework-level opti-

mizations is that they require privileged access to the under-
lying serverless infrastructure. This means that users cannot
use them to speed up their applications unless the optimiza-
tions are adopted by the serverless vendors.

Application-level optimizations do not require privileged
access to the infrastructure, but existing solutions all rely
exclusively on static analysis and/or human intervention,
which limits their scope and e"cacy. For instance, LibProf [47],
while helpful in providing advice, requires a human to design
and implement the optimizations. Function fusion [43, 48] is
automatic and reduces cold start frequency, but at the cost
of the performance of the cold starts that do execute. Finally,
static analysis techniques like FaaSLight [30] can be auto-
mated but requires extensive manual annotation to achieve
good performance [1]. FaaSLight additionally retrieves the
original code as a safeguard, yielding additional overheads.

More generally, cold-start latency is only one of the over-
heads of Function Initialization, and the others—the mone-
tary costs of cold and warm starts—are arguably the more im-
portant metrics for many users. In fact, a !xation on latency
can make the other axes worse. For example, C/R comes
at the cost of resource overheads for storing and restoring
state, the cost of which (as we show in Section 8.6) often
overwhelms the cost of actually running the function.

3.2 A Path Forward: Delta Debugging (DD)
Our work, 𝐿!"#$%, borrows from a technique called Delta
Debugging (DD). DD is a general approach to program mini-
mization that has been used for tasks from isolating faulty/in-
secure code to tracking down con!guration issues. Initially,
DD was used as a tool to minimize crashing programming
inputs [52, 53], but in recent years has been adapted to per-
form program debloating [25]. For the debloating problem,
DD takes as input:

• a program 𝑁 that can be decomposed into a list, 𝑂, of
components, e.g., statements, functions, tokens, etc.

• an oracle O that returns T if the program ful!lls a desired
property and F otherwise.

and tries to !nd a minimal program with respect to the num-
ber of components such that the oracle returns T. Note, how-
ever, that !nding the minimum number of components is NP-
complete [53] and impractical for any reasonably sized prob-
lem. Instead, DD targets a di#erent property: 1-minimality.
Essentially, a program 𝑁⇓ is called 1-minimal if it satis!es the
oracle, and removing any single component from 𝑁⇓ leads
the oracle to return F. These local minima are su"cient for
most practical cases.
The DD algorithm. The general DD algorithm, as intro-
duced in [25], is shown in Algorithm 1. The algorithm uses
a divide-and-conquer approach that begins by setting the
solution candidate,𝑂, to the entire program, and the number
of partitions, 𝑀, to 2.
In each iteration of the algorithm, we split the current

solution candidate 𝑂 into 𝑀 partitions, {𝑃1, . . . ,𝑃𝐿}. For each
partition 𝑃𝑄 , we query the oracle to check if it returns T,
i.e., partition 𝑃𝑄 satis!es the target property. If it does, we
eliminate the remainder of the program from consideration
and repeat the process with a solution candidate of 𝑂 ↘ 𝑃𝑄
and a partition granularity of 𝑀 ↘ 2.

If, on the other hand, none of the partitions pass the oracle
test, we also test each of their complements, i.e., for partition
𝑃𝑄 , we test 𝑂 \ 𝑃𝑄 . If a complement passes the oracle test, we
again narrow down our solution candidate, but here we set
the new granularity to 𝑀 ↘ 𝑀 ⇑ 1.
Finally, if neither the partitions nor their complements

pass the oracle test, the algorithm doubles the granularity
𝑀 ↘ 2𝑀 and repeats the process. The algorithm terminates if
the maximum granularity is exceeded, i.e., 𝑀 > |𝑂|, then we
return the current solution 𝑂 as the minimal program 𝑁⇓.

4 Design Overview
𝐿!"#$% reduces the overheads of Function Initialization in
serverless functions. While our prototype implementation
targets Python, we note that our techniques can be applied
in a very similar way to other interpreted languages like
Javascript4 (see Section 6.1) and can be extended to compiled
languages as demonstrated by prior applications of DD [25,
53], albeit at the cost of compilation overheads during the
debloating process. In any case, 𝐿!"#$%’s approach is to—
through pure application pre-processing—remove code from
applications’ dependency chains that are not needed for the
application to run.

At the core of our approach is the DD technique described
above; however, we emphasize that a naive application of
DD is impractical. In fact, to the best of our knowledge, DD

4
↑70% of all serverless applications are written in Python or Javascript [17].
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and other, more advanced debloating techniques have never
been applied to interpreted languages like Python, despite
its immense popularity [19].

There are several reasons why debloating Python is a chal-
lenging task. First, Python allows for dynamic imports, as
modules can be loaded at runtime. As a result, a static ap-
proach would need to be over-conservative so that it does
not remove any module that might be imported during the
actual program execution. Second, as discussed in Section 2,
today’s applications depend on large third-party libraries
that are intractable to fully debloat, even with powerful al-
gorithms like DD; it is precisely these large libraries that are
most important to trim down.
System design. To tackle the above challenges, we propose
𝐿!"#$%. 𝐿!"#$% utilizes a pipeline consisting of a static an-
alyzer (Section 5.1), a pro!ler (Section 5.2), and a debloater
(Section 5.3) to remove redundant code from serverless ap-
plications. The architecture of 𝐿!"#$% is shown in Figure 3.
𝐿!"#$% accepts as input:

1. A Lambda-compatible Python program and associated
deployment image.

2. An oracle speci!cation, i.e., a set of inputs to the Python
program for which the debloated program needs to
give the same output as the original.

The input program is passed through the static analyzer,
which identi!es the external modules that the application
imports. 𝐿!"#$% then uses a billing cost-based model to pro-
!le these modules and restricts the debloating process to the
modules that would a#ect the application the most when the
application is deployed on the serverless platform. Finally,
𝐿!"#$% debloats this set of imported modules using DD and
produces optimized code for these modules as output.
Bene#ts. By stripping away excess, 𝐿!"#$% helps reduce
memory usage, execution time, and as a result, monetary
costs in a way that is both backward compatible and com-
plementary to other cold start optimizations; its output can
be deployed to AWS Lambda directly with no modi!cation
to the application or underlying infrastructure.
Further, although 𝐿!"#$% is aggressive in its removal of

functions, classes, and module imports, the oracle speci!ca-
tion provides strong guarantees against potential inputs.

5 𝜴!"#$% Work!ow
In this section, we detail the components of 𝐿!"#$% and their
responsibilities in optimizing an application.
Program Inputs. Serverless applications consist of two
parts: (𝑃) initialization code and (𝑄) a designated function
handler. Initialization code consists of library loading and
environment setup. For instance, in Python applications, this
may include imports, de!nitions of helper functions, estab-
lishing connections with databases or other services, etc. All
of these execute once per function instance as part of the

1 # Initialization code
2 import boto3
3
4 session = boto3.Session(
5 aws_access_key_id=..., aws_secret_access_key=...
6 )
7
8 # Lambda function
9 def handler_name(event, context):
10 ...
11 return some_value

Figure 4. Example of a serverless application that establishes
a boto3 session to manage and interact with AWS services.

cold start process. The handler, on the other hand, is the en-
try point that takes a request and processes it; the serverless
platform calls into this handler as new requests arrive.
A minimal example that utilizes AWS SDK for Python is

given in Figure 4. The entry point to the application is the
handler function, which takes as arguments an event and a
context. An event is a JSON formatted object that contains
data for the lambda function to process, while the context
object provides information about the invocation, function,
and runtime environment [8]. Code outside of the handler
counts as the Function Initialization phase, which in this
case includes an import and boto3 session setup.
𝐿!"#$% expects two user inputs. The !rst is an application

in the above format, i.e., a Python program with a lambda
handler. The second is the oracle speci!cation, i.e., JSON !le
containing the input test cases that 𝐿!"#$%will use to ensure
correctness. Each test must contain an event and a context.

5.1 Static Analyzer
The !rst step in 𝐿!"#$% is to obtain information about the
input program and potential candidates for debloating.
Speci!cally, 𝐿!"#$% executes a single pass over the Ab-

stract Syntax Tree (AST) of the program to identify all im-
portedmodules and then employs the state-of-the-art Python
static analyzer PyCG [41] to obtain the call graph of the in-
put program. The call graph gives information about the
attributes of the modules that are de!nitely accessed by the
application. These attributes can safely be excluded from the
DD process, which speeds up the debloating phase. The !nal
list of modules is then passed to the debloater.

5.2 Pro#ler
While, in principle, a debloater could examine all of the mod-
ules imported by the application (minus those that are de!-
nitely accessed), modern serverless applications—particularly
those that might bene!t from 𝐿!"#$%—are large enough to
render such an approach intractable. Instead, 𝐿!"#$% lever-
ages a cost-guided pro!ling step that helps the debloating
process to prioritize modules with the most potential impact.
Top-K ranking of themarginalmonetary cost.While pre-
dicting the potential execution time and memory footprint
savings of module removal is di"cult in general (equivalent
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to solving the halting problem), we !nd marginal monetary
cost to be su"cient to identify a set of potential candidates
for the debloater. We de!ne the marginal monetary cost as:

Marginal Monetary Cost = 𝑅𝑆 ⇑ (𝑅 ⇑ 𝑇) (𝑆 ⇑𝑈) (2)

where 𝑇 and𝑈 are the marginal import time and the memory
footprint of modules and all their submodules, respectively,
and where𝑅 and𝑆 are their sums over all imported modules.
All four values (𝑇 ,𝑈, 𝑅 , and 𝑆) are measured by patch-

ing Python’s import machinery. In particular, we modify
Python’s module loader by inserting time and memory mea-
surements before each module execution. The 𝑇 and𝑈 of a
module are equal to the di#erence in 𝑅 and 𝑆 before and
after the execution of that particular module.

While an imperfect solution, we !nd that the above heuris-
tic avoids most pathological application structures. For ex-
ample, a strawman that only considers execution time might
pick a module that is slow but does not require memory (usu-
ally a result of an un-trimmable loop in the initialization).

5.3 Debloater
𝐿!"#$% implements a general debloater for Python applica-
tions that uses DD as the underlying program minimization
algorithm. The top-K modules from the pro!ler are fed into
the debloater. The debloater uses the output of PyCG to mark
the necessary attributes and proceeds to debloat each mod-
ule with the rest of the module’s attributes. The eventual
output of the debloater is a set of optimized modules.

In each iteration of DD, the debloater modi!es the module
and tests the output of the modi!ed program given each
test case of the oracle speci!cation as input. In most cases,
just ensuring the matching of standard output is su"cient;
however, extensions to other observable e#ects found in
serverless applications is straightforward.

In particular, the stateless nature of serverless applications
means that local side e#ects (e.g., !le system changes) can
be ignored. Rather, serverless state and side e#ects are com-
prised of external calls to remote services and other server-
less functions—validating these types of functions involves
intercepting such operations and checking for equivalence.

5.4 Deployment With Fallbacks
Finally, the optimized program is packaged into a container
image that is deployed to the serverless platform. 𝐿!"#$%, like
similar program analysis techniques, relies on the oracle as a
high-level speci!cation and assumes that users will provide
a strong enough set of test cases to ensure correctness. Even
so, 𝐿!"#$% provides a fallback mechanism that can correctly
handle cases where 𝐿!"#$% removes a necessary attribute.
Speci!cally, if an input ever accesses a deleted attribute, it
will trigger an AttributeError. 𝐿!"#$%wraps the debloated
function to catch these errors and, when detected, invoke
the original function as an independent serverless instance.

The return value of the wrapper is the response from the
original function and a noti!cation about the failing input.
During normal operation, the overhead of this wrapper

is negligible. The tradeo# is that the overheads of actually
triggering the fallback can be high (see Section 8.7). That
said, the fallback mechanism is a safety net that should be
executed very rarely and, when it is triggered, should alert
the user to re-run 𝐿!"#$% with an updated oracle set.

Note that re-execution of a non-idempotent function may
cause inconsistencies and side e#ects. However, these types
of re-executions already exist even without 𝐿!"#$%, so non-
idempotent applications should already be handling these
cases (e.g., using a framework like Beldi [54]).
More broadly, we note that there are well-known tech-

niques to assist users in creating oracle sets for these types
of tools. For example, one common and relatively robust
approach is running a fuzzer against the optimized program.
If the fuzzer !nds a failing input, then the user can add the
input to the oracle set and rerun 𝐿!"#$%.

6 The Debloating Process
6.1 Tailoring DD for Serverless Python Applications
A critical design decision in 𝐿!"#$% is to identify the appropri-
ate debloating granularity not only based on Python’s seman-
tics but also based on the potential speed-up of the loading
time when the application is deployed on AWS Lambda.

At a high level, everything in Python is treated as an object.
As such, modules are also Python objects that wrap around a
dictionary that maps names to other objects. This dictionary
de!nes the namespace of the module, i.e., the attributes of
the module that we can access after we import it.

When a Python module is imported, all the statements in
the module execute in program order. Python’s import ma-
chinery constructs the namespace of the module on the basis
of each statement. For example, the statement import module
creates a module object for module and adds it to the names-
pace. Similarly, the de!nition of functions and classes creates
the corresponding function and class objects.

Attributes are, thus, the building blocks of a module, and
we see an opportunity to run DD with this granularity in-
stead of at the granularity of statements. Compared to state-
ment granularity, attribute granularity is coarser with re-
spect to function and class de!nitions, the same for import
statements, but more !ne-grained for from module import
attr statements, since attr can be a list of attributes.
To minimize the overheads of Function Initialization, we

use DD with attribute granularity to debloat imported mod-
ules. By doing so, we not only eliminate function and class
de!nitions and the costly import statements but also remove
unused module attributes from from import statements,
thus reducing the memory footprint of the created mod-
ule objects. With statement granularity, we cannot remove
speci!c attributes, as it removes all or none of them.
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1 import torch
2
3 x = torch.tensor([1.0, 2.0])
4 y = torch.tensor([3.0, 4.0])
5 z = view(torch.add(x, y), 2, 1)
6 model = torch.nn.Linear(2, 1)
7 model.weights = torch.tensor([[1.0], [2.0]])
8 model.bias = torch.tensor([3.0])
9
10 print(model(z))

Figure 5. Sample application that uses a simpli!ed torch.

Generalizability. It is worth discussing the generalizability
of the above techniques to other interpreted languages like
Javascript (JS), though a full exploration of the design is out
of scope. JS o#ers a similar import model as Python; one
can import speci!c exports from another module, similar
to the from import statement of Python. Thus, DD can
be adjusted in a straightforward way to JS modules. An
additional complexity of JS is the wider range of module
namespaces, which include URLs. To handle this, one can
resolve namespaces statically and then proceed to DD.

6.2 Running Example
To illustrate our implementation of DD for Python programs,
we will consider a simpli!ed version of the torch module:

𝑂 =
{

torch.tensor, torch.add, torch.view,
torch.nn.Linear, torch.nn.MSELoss, torch.optim.SGD

}

where torch.tensor is a tensor class and torch.add and
torch.view are two tensor operations. torch.nn.Linear
is a Neural Network layer from the torch.nn submodule.
Finally, torch.nn.MSELoss and torch.optim.SGD are utili-
ties for optimizing Neural Networks.
We import the torch module in the simple application

shown in Figure 5. This application does not make use of
torch.nn.MSELoss and torch.optim.SGD. Assuming that
none of the other four attributes depend on them, DD will
remove the redundant attributes from the torch module
through the process shown in Figure 6.
After DD correctly identi!es the redundancy of the two

attributes and removes them from the library, the result-
ing module initialization code is shown in Figure 7. The
debloated library now consists of:

𝑂⇓ =
{

torch.tensor, torch.add,
torch.view, torch.nn.Linear

}

The debloated library omits the attribute torch.nn.MSELoss
and skips the import of torch.optim entirely.

6.3 Pro#ling-driven Debloater
Implementing the above, the results of the static analysis and
pro!ling phases are fed into an attribute-level DD process.
All the magic attributes of the module (e.g. __file__ ) [22]
are excluded from DD. In each iteration of the algorithm,
the original __init__.py !le is retrieved and then mod-
i!ed based on the attributes that DD currently tests. The

1 tensor add view Linear SGD MSELoss ✁
2 tensor add view Linear SGD MSELoss ✂
3 tensor add view Linear SGD MSELoss ✂
4 tensor add view Linear SGD MSELoss ✂
5 tensor add view Linear SGD MSELoss ✂
6 tensor add view Linear SGD MSELoss ✂
7 tensor add view Linear SGD MSELoss ✂
8 tensor add view Linear SGD MSELoss ✂
9 tensor add view Linear SGD MSELoss ✁
10 tensor add view Linear SGD MSELoss ✂
11 tensor add view Linear SGD MSELoss ✂
12 tensor add view Linear SGD MSELoss ✂
13 tensor add view Linear SGD MSELoss ✂
14 tensor add view Linear SGD MSELoss ✂
15 tensor add view Linear SGD MSELoss ✂
16 tensor add view Linear SGD MSELoss ✂

Figure 6. Visual walkthrough of the DD algorithm applied
to the simpli!ed torch library. Attributes with blue back-
ground are the ones under test in the current iteration. Note
that in step 10, we halve the granularity twice since all sets
for 𝑀 = 2 have been tested in previous iterations.

modi!cation is achieved with a single traversal of the AST.
The modi!ed __init__.py !le is then copied back to the
site-packages directory.

For each of the modules in the top-K of marginal monetary
cost, the debloating process consists of the following steps:

1. The module is loaded in order to access its attributes.
2. The __init__.py !le of the module is backed up so

that it can be retrieved in every iteration of DD.
3. A set of potentially redundant attributes is constructed

containing all the attributes of the module, except
those that are contained in the output of PyCG and
the magic attributes of the module.

4. Run the DD algorithm for the module. Note that only
the set of potentially redundant attributes de!ned in
Step 3 are considered; all other code is untouched.

7 Implementation
The 𝐿!"#$% implementation comprises roughly 1.1k LoC
of Python. The only third-party packages we use are PyCG
[41] to extract the call graph of applications and psutil to
measure the memory footprint of the imported modules. We
have tested our implementation against Python 3.10. There
are two implementation details that are important to note.
Module isolation.When a Python module is imported, it
is cached by the interpreter to optimize subsequent imports.
This caching, however, prevents us from conducting static
analysis before the pro!ling phase, since modules need to
be loaded to retrieve their AST. As a result, the Python inter-
preter would use the cached version of each module, leading
to inaccurate measurements of the module’s import time.

To address this, 𝐿!"#$% importsmodules in isolation. Specif-
ically, a new process is spawned in both the static analysis
and the pro!ling phase. A new process is also spawned for
each run of DD for the top 𝑉 module. By spawning a new
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1 from torch.nn import Linear, MSELoss
2 from torch.optim import SGD
3
4 class tensor():
5 def __init__(self, ...):
6 ...
7 def add(t1: tensor, t2: tensor) -> tensor:
8 ...
9 def view(t: tensor, dim1: int, dim2: int) -> tensor:
10 ...

(a) Original torch library.

1 from torch.nn import Linear
2 pass
3
4 class tensor():
5 def __init__(self, ...):
6 ...
7 def add(t1: tensor, t2: tensor) -> tensor:
8 ...
9 def view(t: tensor, dim1: int, dim2: int) -> tensor:
10 ...

(b) Debloated torch library.

Figure 7. Simpli!ed version of torch (a) before and (b) after debloating.

process for each phase, we provide each with its own address
space, preventing modules from being cached across phases.
Deployment. 𝐿!"#$% directly modi!es the site-packages
directory of the underlying Python installation. To ensure
that these modi!cations are compatible with AWS Lambda,
we embed 𝐿!"#$% in the building phase of the container
image. We use Amazon Linux Base as the base image. 𝐿!"#$%
deploys the resulting container image to AWS Lambda.

8 Evaluation
Our evaluation aims to answer these high-level questions:

• (Q1) End-to-end latency, memory, and cost reduc-
tion: Does debloating applications with 𝐿!"#$% reduce
the cold start latency, the memory footprint, and the total
billed cost of applications in serverless platforms?

• (Q2) Pro#ling e"ectiveness: Does the pro!ling compo-
nent of 𝐿!"#$% select modules that are heavily a#ecting
the application’s performance?

• (Q3) Debloating time: How long does debloating take?
Is 𝐿!"#$% viable as a pre-deployment optimizer?

• (Q4) Scaling: Does 𝐿!"#$% scale with 𝑉? What is the
optimal 𝑉 that keeps debloating time reasonable?

• (Q5)Warm start performance:Does 𝐿!"#$% negatively
a#ect warm start performance?

• (Q6) Versus Checkpoint/Restore: How does 𝐿!"#$%
compare to and complement C/R mechanisms?

Experimental setup. We perform the container build on
Cloudlab’s [16] c6525-25gmachines that have Ubuntu 22.04,
16-core AMD 7302P 3GHz CPUs, and 128GB RAM before
uploading and executing the !nal programs on AWS Lambda
with the x86 ISA and Python runtime.
Benchmarks and methodology.We use the applications
from Table 1 as our benchmarks. Unless otherwise noted,
we use 𝑉 = 20 and rank modules using their approximate
marginal monetary cost. The oracle set for each application
consists of 1–3 test cases. When the original benchmark (e.g.,
FaaSLight or RainbowCake) includes inputs, the set is taken
from those benchmarks; otherwise, we manually generate
examples to emulate simple, typical tasks that use the target
library. Both the original and 𝐿!"#$%-optimized applications
are uploaded to AWS Lambda as Docker images.

We then perform 100 invocations and collect metrics from
the AWS Lambda execution log. The input for each invoca-
tion comes from test cases in the oracle set. To trigger 100
cold starts, we update the function description !eld after
each invocation request, forcing AWS Lambda to discard the
warm function instance. For both cold and warm starts, we
query the AWS log to ensure the invocation belongs to the
desired start type and discard the data point otherwise.

8.1 (Q1) Latency, Memory and Cost Reduction
Figure 8 shows 𝐿!"#$%’s improvements to latency, memory
footprint, and monetary cost.
End-to-end latency. End-to-end latency (E2E) measures
the time between the user sending an invocation request and
receiving a response from AWS Lambda. Several applications
like lightgbm, resnet, skimage, and spacy show signi!cant
speedup. On average, 𝐿!"#$% achieves 1.2↓ speed-up in E2E
latency with a maximum of 2↓ for resnet.
There are several applications like "mpeg and image-

resize that do not bene!t from 𝐿!"#$%. These two applica-
tions use Python libraries that wrap the tools ffmpeg and
ImageMagick and perform calls to their executables and are,
therefore, bottlenecked on the corresponding system calls
to these executables. In principle, these libraries could also
be included in DD, but deployment would be more complex.
Memory footprint. Memory measures the runtime mem-
ory footprint of applications in MB. Multiple applications
bene!t heavily by using 𝐿!"#$%, like dna-visualization,
lightgbm, and skimage. These bene!ts come directly from
removing redundant attributes from the module objects cre-
ated from Python’s import mechanism. Similarly to E2E
latency, applications like "mpeg and image-resize show
little e#ect. On average, 𝐿!"#$% achieves 10.3% improvement
in memory with a max of 42% for skimage.
Monetary cost. Using Equation (1) and the actual memory
footprint, applications like dna-visualization, lightgbm,
resnet, skimage, and spacy all exhibit large improvements
in cost. On average, 𝐿!"#$% reduces cost by 19.7% with a max
of 59% for skimage.
Since AWS Lambda has a minimum billing threshold for

the con!gured memory (128MB), applications requiring less
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Figure 8. 𝐿!"#$%’s improvements to latency, memory footprint, and monetary cost for our benchmarked applications. The
left axis and bars show the results for the original and trimmed versions. For latency, we show a breakdown of E2E versus
Function Initialization time. The right axis and line graph show the relative improvement of 𝐿!"#$%. The dashed line helps
illustrate the speedup or improvement against the original application.

Memory (MB) Import Time (s) E2E Latency (s)

ApplicationFaaSLight 𝑀!"#$% FaaSLight 𝑀!"#$% Vulture FaaSLight 𝑀!"#$%

huggingface -16.06% -2.11% –21.07% -10.21% -2.30% –17.69% -6.65%
img-resize –3.23% -2.96% –7.77% -1.82% -1.02% –11.10% -1.47%
lightgbm –6.92% -38.44% –20.73% -54.81% -1.03% –18.66% -30.50%
lxml –3.23% -0.21% –10.84% -41.58% -1.54% –6.63% -19.37%
scikit –1.41% -9.8% –13.53% -19.60% -3.02% –12.83% -2.11%
skimage -42.98% -42.05% –69.27% -42.41% -2.24% –42.05% -34.59%
tensor!ow –3.17% -9.01% –13.36% -15.58% -1.40% –11.77% -15.50%
wine –6.09% -11.43% –17.94% -13.73% 0.22% –14.72% -8.34%

Table 2. Comparison between reported improvements of
FaasLight [30], Vulture [5] and 𝐿!"#$%.

are billed as if they are using this minimum threshold, which
hides 𝐿!"#$%’s memory bene!t for small applications.
Comparison with FaaSLight and Vulture.We present a
comparison with FaaSLight [30] and Vulture [5] in Table 2.
We note that, similar to [47], we were unable to run the orig-
inal tools to the same degree. Thus, we only compare against
the reported numbers for their applications and metrics. We
omit trivial use cases where all imports are unused.

Despite FaaSLight taking advantage of extensive manual
annotations and intervention, the two systems show very
similar performance in skimage, tensor!ow, and wine.
𝐿!"#$% seems to heavily outperform FaaSLight in lightgbm
and lxml, while FaaSLight has greater improvements in hug-
gingface and image-resize. Part of this di#erence may be
due to smaller trial counts in FaaSLight’s evaluation, as at
20 trials, our results still exhibited high variance. 𝐿!"#$% has
greater memory improvements in general, due to its more
!ne-grained handling of from import statements. Both sys-
tems outperform the reported [30] performance of Vulture.

8.2 (Q2) Ablation Study
Next, we conduct an ablation study to explore the e#ec-
tiveness of various scoring methods for the 𝐿!"#$% pro!ler.
Speci!cally, we test 4 di#erent scoring methods to rank the
top K modules: (𝑃) time, (𝑄) memory, (𝑊) combined, and (𝑋)
random. Time and memory methods rank modules based
on the import time and the memory footprint, respectively,
while the combined method utilizes Equation (2). Random
randomly assigns values in the range [0, 1] to each module.

The results from the ablation study are shown in Figure 9.
We show results from a representative set of three applica-
tions. We can see that the combined scoring method con-
stantly outperforms the other three methods, which show-
cases that the pro!ling phase, despite its approximations,
correctly identi!es modules with the largest impact on cost.

8.3 (Q3) Debloating Time and E$cacy
In Table 3, we present the total debloating time of each appli-
cation, along with the most representative module’s number
of attributes before and after debloating. As mentioned in
Section 5.3, we validate the output of each DD iteration by
checking the standard output of the application. If we were
to implement a call interceptor, there would be a small addi-
tional overhead in debloating time.
Debloating time ranges from minutes for small applica-

tions to 8 hours for the largest one (huggingface). The pri-
mary culprits are theML libraries, e.g., torch, which consists
of 3.9k !les, and transformers with 1.9k !les. We empha-
size, however, that debloating time is o# of the critical path—
developers only apply 𝐿!"#$% once, as the last step before
deploying the application. There are also many techniques
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Figure 9. Cost, Memory and E2E improvement for di#erent
scoring methods.

that could be used to reduce this time. At a basic level, users
can lower the number of modules to debloat (default is 20) to
speed up the process. Prior work has also demonstrated the
promise of learning techniques to choose the attribute set
that is the most probable to pass the oracle test [25]. Finally,
parallelization of DD may be possible; however, this is out of
the scope of this paper as it likely requires novel approaches
to dealing with dependencies between modules.
As for e"cacy, 𝐿!"#$% achieves a sizable reduction in

attributes. For instance, 𝐿!"#$% removes 3291 out of 3300 at-
tributes from the transformers top-level module and 1306
out of 1414 attributes from torch. We also observe that the
number of removed attributes for the same module varies be-
tween di#erent applications. Speci!cally, it removes 496 out
of 537 attributes from numpy for dna-visualization, while
forwine, it only removes 33. This happens because di#erent
applications require di#erent functionalities (and therefore
di#erent number of attributes) from the same module.

8.4 (Q4) Scalability and Optimal Debloating Size
We conduct experiments with varying numbers for𝑉 , i.e., the
number of top modules to debloat. We again show only the
results from 3 applications since most applications showcase
the same behavior. The results are shown in Figure 10.
We observe improvements as the number of modules to

debloat grows up until 𝑉 = 20 from which point onwards
there is a plateau in performance. This indicates that the
modules that contribute the most during the import process
have already been debloated and further debloating does not
incur any performance bene!ts.

Debloat Example Attributes Ckpt. Size (MB)
Application Time (s) Module (Post/Pre) (Post/Pre)

chdb-olap 44 chdb 11/32 39/41
dna-visualization 2142 numpy 496/537 14/17
epub-pdf 1878 pptx 20/38 36/37
"mpeg 87 ffmpeg 35/46 11/11
huggingface 28756 transformers 3291/3300 240/255
igraph 159 igraph 137/185 11/13
image-resize 1973 wand.image 52/91 24/25
jsym 4385 sympy 914/938 37/41
lightgbm 4635 lightgbm 32/45 22/33
lxml 955 lxml.html 53/84 18/20
markdown 86 markdown 16/28 9/11
pandas 7066 pandas 125/141 36/41
qiskit-nature 1278 qiskit 30/49 224/244
resnet 26113 torch 1306/1414 80/84
scikit 4142 joblib 29/50 65/68
shapely-numpy 2393 shapely 161/176 15/17
skimage 3625 skimage 16/18 40/51
spacy 4722 spacy 36/60 85/99
tensor!ow 10930 tensorflow 305/355 166/185
textblob 1561 nltk 550/560 25/29
wine 8573 numpy 33/537 87/95

Table 3. Benchmarked applications and 𝐿!"#$%’s e#ect on
their debloating time (𝑉 = 20), C/R checkpoint size, and the
attribute count of a representative module.

Figure 10. Varying 𝑉 (number of modules to debloat).

Figure 11.Warm start E2E latency impact of 𝐿!"#$%.

Finally, memory and E2E latency seem to follow the same
growth pattern. Cost also mimics the growth of these two
factors, which is expected from Equation (1).

8.5 (Q5) Impact on Warm Starts
Figure 11 shows the di#erence in E2E latencies between
the original and 𝐿!"#$% applications during normal, warm-
start invocation. The di#erence is less than 1 second, or 10%,
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Figure 12. Comparison of initialization time between 𝐿!"#$%, C/R and C/R + 𝐿!"#$%.

Figure 13.CDF of the ratio between SnapStart cost over total
cost for functions in a simulated Azure trace [45]. Even with
a keep-alive duration much longer than common practice,
SnapStart doubles the cost of the majority of the applications.

for all applications, which is expected as the behavior of a
debloated application should stay the same as the original
one. This small variation can be attributed external factors
such as network $uctuations and AWS Lambda instance
assignment, which we observed periodically through our
extensive experimentation and are di"cult to completely
eliminate without large-scale longitudinal evaluations.

8.6 (Q6) Comparison with Checkpoint/Restore
Next, we compare the performance of 𝐿!"#$% against C/R
techniques, which also seek to reduce cold-start latencies.
C/R baselines.We evaluate against two strong baselines.
The !rst is C/R prototype based on CRIU [39], which is

the state-of-the-art C/R tool in userspace. CRIU can freeze a
running application and checkpoint it to disk so that it can
be restored later from the point at which it was frozen. In the
case of cold starts, the checkpoint should be taken right after
the initialization but before the handler. When another cold
start is triggered, CRIU can restore the state of the function
from the checkpoint. Note that CRIU requires either the
CAP_CHECKPOINT_RESTORE Linux capability, which cannot
be set in AWS Lambda. Results in this section are instead
based on a Docker container on a local machine with Ubuntu
24.04, 16-core Intel Ultra 7 155H, and 16GB RAM.
The second baseline is AWS SnapStart [3], an optional

feature that takes an encrypted, VM-level snapshot of server-
less functions. While SnapStart is a production feature, it is
currently limited to very small function sizes, preventing us
from evaluating our baselines directly. Rather, our results
here are mainly with the aid of simulation.

Application Original 𝜴!"#$% Fallback
Warm Cold

dna-visualization Cold 0.58 0.54 0.98 1.69
Warm 0.10 0.09 0.14 0.61

lightgbm Cold 0.98 0.80 1.09 2.06
Warm 0.08 0.08 0.14 1.06

spacy Cold 2.23 2.01 2.31 4.63
Warm 0.08 0.08 0.14 2.31

huggingface Cold 6.04 5.28 6.10 12.29
Warm 0.31 0.29 0.35 6.31

Table 4. E2E latencies (in s) when triggering fallback. Origi-
nal and 𝐿!"#$% are the baseline E2E latencies with no error.

In both cases, we compare the original application against
C/R, 𝐿!"#$%, and the combination of the two.
Initialization time versus CRIU. Figure 12 compares the
initialization time of all evaluated variants. We observe sig-
ni!cant di#erences between applications, largely based on
their initialization time.
For small applications (<0.2 s), 𝐿!"#$% outperforms all

other variants. In fact, C/R is much worse than the baseline
application. This is due to the fact that CRIU recreates the
process tree by forking its own process and then restores
process state by using information collected from reading
/proc during the checkpointing. This procedure incurs an
overhead, which seems to be around 0.1 seconds.
For larger applications, pure C/R begins to outperform

pure 𝐿!"#$%. An exception is lightgbm, which bene!ts sig-
ni!cantly from debloating. C/R becomes more e#ective as
we look at larger applications since loading memory pages
from the checkpoint image is much faster than !le I/O and
command execution by the Python interpreter. In addition,
the initialization phase includes not only library imports
but also environment/model loading, an action that 𝐿!"#$%
cannot optimize. This is the case in spacy, which needs to
load a language model to perform a simple NLP task.
The two techniques are, however, complementary as 𝐿!

"#$% can be used to reduce the size of the checkpoint image.
Table 3 shows the checkpoint size produced by CRIU and
by CRIU+𝐿!"#$%. Debloating always reduces the size of the
checkpoint and does so by an average of 11%.
Monetary costs of using SnapStart. The tradeo# of C/R-
based approaches are its large resource overheads to store
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Figure 14. Amortized invocation and SnapStart costs for simulated traces of our benchmarked applications. Simulated based
on an Azure trace [45] and AWS SnapStart pricing [4], assuming a 15-minute keep-alive time.

and restore the checkpoints. We can quantify these over-
heads using the pricing of SnapStart, which charges users
based on both the restore cost (number of cold starts) and
storage costs (quantifed in units of GB-seconds) [4].

To illustrate the magnitude of these costs, we simulate run-
ning applications in theMicrosoft’s Azure Function trace [45]
with SnapStart. Figure 13 shows a CDF of the ratio between
SnapStart costs and the total cost for the applications. Even
for extremely long keep-alive times, the median application
would spend >60% of its cloud budget on paying for C/R
support, mostly on caching costs.
To estimate 𝐿!"#$%’s potential e#ect on these costs, we

take each of the applications in Table 1 and !nd the most
similar function in the entirety of the Azure trace. Similarity
is quanti!ed as the L2 norm of memory and duration. We
then simulate the benchmarked application over 24 hours
using the associated function’s invocation traces (assuming
functions stay warm for at least 15mins). As shown in Fig-
ure 14, 𝐿!"#$% reduces total costs by up to 42% (average of
11%) by reducing the memory footprint and checkpoint size.

8.7 Fallback Overhead
𝐿!"#$% can fall back to the original function if necessary
attributes are incorrectly removed. When triggering the fall-
back, the overheads include setup, communication delays,
and invocation of the original function. We comprehensively
evaluate these overheads by measuring E2E latencies in ev-
ery combination of warm/cold start for the 𝐿!"#$% and the
fallback functions. Table 4 shows results for representative
applications of di#erent sizes: small (dna-visualization),
medium (lightgbm), and large (spacy, huggingface).
The setup overhead is around 50ms, measured by times-

tamps in the function. When the fallback function is cold,
its cold start latency dominates the fallback overhead. Cold
fallback overhead doubles the E2E latency of a cold 𝐿!"#$%
function and contributes over 90% of the latency of a warm
𝐿!"#$% function. Overall, the invocation of the original func-
tion is the main source of fallback overhead.

9 Related and Future Work in Debloating
Expanding Section 3.1, 𝐿!"#$% is also related to the exten-
sive work in debloating such applications with techniques

like static and reachability analysis [5, 7, 37], dynamic analy-
sis [24, 37], just-in-time loading [33] or even manual investi-
gation and modi!cation of applications [12, 47]. Like 𝐿!"#$%,
these systems are motivated by the fact that modern software
is heavily bloated due to the use (and reuse) of libraries o#er-
ing a plethora of functionalities [19, 27, 36]. 𝐿!"#$% is based
on similar techniques to conventional debloaters, but is the
!rst to speci!cally target serverless applications and their
unique structure, execution model, and optimality criteria.

Under the umbrella of debloating, DD is a prominent tech-
nique, but it has been constrained to statically typed lan-
guages like C/C++ [53] or, very recently, dynamically typed
compiled languages [40]. This technique and e#orts to im-
prove it (e.g., using learning to accelerate the search for the
reduced program [25]) are complementary to 𝐿!"#$%.
Looking forward, although developers pay the cost of

debloating once (and therefore, this cost is o# the critical
path), 𝐿!"#$% still su#ers from substantial debloating times
for medium to large applications. We plan on accelerating
the debloating phase with various optimizations.
First, we will parallelize DD both intra-(multiple sets of

attributes of the same module in parallel) and inter-(multiple
modules in parallel) modules. The latter will require very
meticulous handling of module dependencies, mainly due
to Python’s cyclic imports. Finally, we plan to implement
a continuous debloating pipeline for both function updates
and inputs that are collected through our fallback mecha-
nism. This pipeline will make use of logs collected during the
initial debloating to drive the subsequent debloating more
e"ciently in both aforementioned cases.

10 Conclusion
This paper introduced 𝐿!"#$%, a system designed to reduce
the overhead of Python-based serverless applications by op-
timizing their Function Initialization phase. This phase has
an outsized e#ect on not only cold start latency but also the
resource consumption and monetary costs of all executions—
cold or warm. 𝐿!"#$% leverages pro!ling and DD, and o#ers
a practical and immediately deployable solution that aligns
well with other cold start optimization e#orts while con-
tributing uniquely to cost e"ciency.

141



ASPLOS ’25, March 30-April 3, 2025, Ro!erdam, Netherlands Xuting Liu, Spyros Pavlatos, Yuhao Liu, and Vincent Liu

Acknowledgments
We gratefully acknowledge our shepherd, Pedro Fonseca, and
the anonymous ASPLOS reviewers for all of their thoughtful
comments. This work was funded in part by NSF grants
CNS-2107147, CCF-2326606, and CNS-2321726.

References
[1] [n. d.]. GitHub – WenJinfeng/FaaSLight. h!ps://github.com/

WenJinfeng/FaaSLight. [Accessed 09-14-2024].
[2] 2019. Provisioned Concurrency for Lambda Functions.

h!ps://aws.amazon.com/cn/blogs/aws/new-provisioned-
concurrency-for-lambda-functions/. [Accessed 18-10-2024].

[3] 2025. Improving startup performance with Lambda SnapStart - AWS
Lambda — docs.aws.amazon.com. h!ps://docs.aws.amazon.com/
lambda/latest/dg/snapstart.html. [Accessed 09-03-2025].

[4] 2025. Serverless Computing – AWS Lambda Pricing – Amazon
Web Services — aws.amazon.com. h!ps://aws.amazon.com/lambda/
pricing/#SnapStart_Pricing. [Accessed 09-03-2025].

[5] 2025. Vulture: Find dead Python code. h!ps://github.com/
jendrikseipp/vulture. [Accessed 10-03-2025].

[6] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419–434.
h!ps://www.usenix.org/conference/nsdi20/presentation/agache

[7] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P Kemerlis,
and Georgios Portokalidis. 2019. Nibbler: debloating binary shared
libraries. In Proceedings of the 35th Annual Computer Security Applica-
tions Conference. 70–83.

[8] Amazon Web Services 2024. Documentation – AWS Lambda. h!ps://
docs.aws.amazon.com/lambda/latest/dg/python-handler. [Accessed
17-09-2024].

[9] Amazon Web Services 2024. Pro!ling functions with AWS Lambda
Power Tuning - AWS Lambda. h!ps://docs.aws.amazon.com/lambda/
latest/operatorguide/profile-functions.html. [Accessed 17-09-2024].

[10] Amazon Web Services 2024. Serverless Computing – AWS Lambda
Pricing. h!ps://aws.amazon.com/lambda/pricing/. [Accessed 17-09-
2024].

[11] Lixiang Ao, George Porter, and Geo#rey M. Voelker. 2022. FaaSnap:
FaaS made fast using snapshot-based VMs. In Proceedings of the Sev-
enteenth European Conference on Computer Systems (Rennes, France)
(EuroSys ’22). Association for Computing Machinery, New York, NY,
USA, 730–746. h!ps://doi.org/10.1145/3492321.3524270

[12] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019.
Less is More: Quantifying the Security Bene!ts of Debloating Web
Applications. In 28th USENIX Security Symposium (USENIX Secu-
rity 19). USENIX Association, Santa Clara, CA, 1697–1714. h!ps:
//www.usenix.org/conference/usenixsecurity19/presentation/azad

[13] Vivek M. Bhasi, Jashwant Raj Gunasekaran, Prashanth Thinakaran,
Cyan Subhra Mishra, Mahmut Taylan Kandemir, and Chita Das. 2021.
Kraken: Adaptive Container Provisioning for Deploying Dynamic
DAGs in Serverless Platforms. In Proceedings of the ACM Symposium
on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association for
Computing Machinery, New York, NY, USA, 153–167. h!ps://doi.org/
10.1145/3472883.3486992

[14] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka.
2023. On-demand Container Loading in AWS Lambda. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23). USENIX Association,
Boston, MA, 315–328. h!ps://www.usenix.org/conference/atc23/
presentation/brooker

[15] Chen Chen, Lars Nagel, Lin Cui, and Fung Po Tso. 2023. S-Cache:
Function Caching for Serverless Edge Computing. In Proceedings of the
6th International Workshop on Edge Systems, Analytics and Networking
(Rome, Italy) (EdgeSys ’23). Association for Computing Machinery,
New York, NY, USA, 1–6. h!ps://doi.org/10.1145/3578354.3592865

[16] Cloudlab [n. d.]. CloudLab - A testbed for cloud computing research.
h!ps://www.cloudlab.us/.

[17] Datadog. [n. d.]. The State of Serverless 2020 — datadoghq.com. h!ps:
//www.datadoghq.com/state-of-serverless-2020/. [Accessed 09-11-
2024].

[18] Datadog. 2025. The State of Serverless. h!ps://www.datadoghq.com/
state-of-serverless/. [Accessed 10-03-2025].

[19] Georgios-Petros Drosos, Thodoris Sotiropoulos, Diomidis Spinellis,
and Dimitris Mitropoulos. 2024. Bloat beneath Python’s Scales: A Fine-
Grained Inter-Project Dependency Analysis. Proc. ACM Softw. Eng. 1,
FSE, Article 114 (July 2024), 24 pages. h!ps://doi.org/10.1145/3660821

[20] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing
Machinery, New York, NY, USA, 467–481. h!ps://doi.org/10.1145/
3373376.3378512

[21] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475–488.
h!p://www.usenix.org/conference/atc19/presentation/fouladi

[22] Python Software Foundation. 2003. PEP 302 – New Import
Hooks. h!ps://peps.python.org/pep-0302/#specification-part-1-the-
importer-protocol. h!ps://peps.python.org/pep-0302/#specification-
part-1-the-importer-protocol

[23] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping
serverless computing alive with greedy-dual caching. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA)
(ASPLOS ’21). Association for Computing Machinery, New York, NY,
USA, 386–400. h!ps://doi.org/10.1145/3445814.3446757

[24] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu,
Xujiewen Wang, Rundong Zhou, and Heng Yin. 2014. Make it work,
make it right, make it fast: building a platform-neutral whole-system
dynamic binary analysis platform. In Proceedings of the 2014 Interna-
tional Symposium on Software Testing and Analysis (San Jose, CA, USA)
(ISSTA 2014). Association for Computing Machinery, New York, NY,
USA, 248–258. h!ps://doi.org/10.1145/2610384.2610407

[25] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik.
2018. E#ective Program Debloating via Reinforcement Learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association for
Computing Machinery, New York, NY, USA, 380–394. h!ps://doi.org/
10.1145/3243734.3243838

[26] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-
reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming
Simpli!ed: A Berkeley View on Serverless Computing. Technical Report
UCB/EECS-2019-3. h!p://www2.eecs.berkeley.edu/Pubs/TechRpts/
2019/EECS-2019-3.html

[27] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020.
Set the Con!guration for the Heart of the OS: On the Practicality of
Operating System Kernel Debloating. Proc. ACM Meas. Anal. Comput.
Syst. 4, 1, Article 03 (May 2020), 27 pages.

142

https://github.com/WenJinfeng/FaaSLight
https://github.com/WenJinfeng/FaaSLight
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://aws.amazon.com/cn/blogs/aws/new-provisioned-concurrency-for-lambda-functions/
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://aws.amazon.com/lambda/pricing/#SnapStart_Pricing
https://aws.amazon.com/lambda/pricing/#SnapStart_Pricing
https://github.com/jendrikseipp/vulture
https://github.com/jendrikseipp/vulture
https://www.usenix.org/conference/nsdi20/presentation/agache
https://docs.aws.amazon.com/lambda/latest/dg/python-handler
https://docs.aws.amazon.com/lambda/latest/dg/python-handler
https://docs.aws.amazon.com/lambda/latest/operatorguide/profile-functions.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/profile-functions.html
https://aws.amazon.com/lambda/pricing/
https://doi.org/10.1145/3492321.3524270
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://doi.org/10.1145/3472883.3486992
https://doi.org/10.1145/3472883.3486992
https://www.usenix.org/conference/atc23/presentation/brooker
https://www.usenix.org/conference/atc23/presentation/brooker
https://doi.org/10.1145/3578354.3592865
https://www.cloudlab.us/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://doi.org/10.1145/3660821
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3373376.3378512
http://www.usenix.org/conference/atc19/presentation/fouladi
https://peps.python.org/pep-0302/#specification-part-1-the-importer-protocol
https://peps.python.org/pep-0302/#specification-part-1-the-importer-protocol
https://peps.python.org/pep-0302/#specification-part-1-the-importer-protocol
https://peps.python.org/pep-0302/#specification-part-1-the-importer-protocol
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html


𝑀!"#$%: Optimizing Function Initialization in Serverless Applications ASPLOS ’25, March 30-April 3, 2025, Ro!erdam, Netherlands

[28] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022.
Tetris: Memory-e"cient Serverless Inference through Tensor Sharing.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX
Association, Carlsbad, CA. h!ps://www.usenix.org/conference/atc22/
presentation/li-jie

[29] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo.
2022. Help Rather Than Recycle: Alleviating Cold Startup in Server-
less Computing Through Inter-Function Container Sharing. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). USENIX As-
sociation, Carlsbad, CA, 69–84. h!ps://www.usenix.org/conference/
atc22/presentation/li-zijun-help

[30] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi
Liu, Haoyu Wang, and Xin Jin. 2023. FaaSLight: General Application-
level Cold-start Latency Optimization for Function-as-a-Service in
Serverless Computing. ACM Trans. Softw. Eng. Methodol. 32, 5, Article
119 (July 2023), 29 pages. h!ps://doi.org/10.1145/3585007

[31] A Cloud Guru News. [n. d.]. How long does AWS Lambda
keep your idle functions around before a cold start?
h!ps://www.pluralsight.com/resources/blog/cloud/how-long-does-
aws-lambda-keep-your-idle-functions-around-before-a-cold-start.
[Accessed 09-14-2024].

[32] Shanxing Pan, Hongyu Zhao, Zinuo Cai, Dongmei Li, Ruhui Ma, and
Haibing Guan. 2024. Sustainable Serverless Computing With Cold-
Start Optimization and Automatic Work$ow Resource Scheduling.
IEEE Transactions on Sustainable Computing 9, 3 (2024), 329–340. h!ps:
//doi.org/10.1109/TSUSC.2023.3311197

[33] Chris Porter, GirishMururu, Prithayan Barua, and Santosh Pande. 2020.
BlankIt library debloating: getting what you want instead of cutting
what you don’t. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 164–180. h!ps://doi.org/10.1145/3385412.3386017

[34] PyPI [n. d.]. PyPI - The Python Package Index. h!ps://pypi.org/.
[Accessed 17-09-2024].

[35] PyPI 2024. Statistics · PyPI. h!ps://pypi.org/stats/. [Accessed 17-09-
2024].

[36] Anh Quach, Rukayat Erinfolami, David Demicco, and Aravind Prakash.
2017. A Multi-OS Cross-Layer Study of Bloating in User Programs,
Kernel and Managed Execution Environments. In Proceedings of the
2017 Workshop on Forming an Ecosystem Around Software Transfor-
mation (Dallas, Texas, USA) (FEAST ’17). Association for Comput-
ing Machinery, New York, NY, USA, 65–70. h!ps://doi.org/10.1145/
3141235.3141242

[37] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software
through Piece-Wise Compilation and Loading. In 27th USENIX Secu-
rity Symposium (USENIX Security 18). USENIX Association, Baltimore,
MD, 869–886. h!ps://www.usenix.org/conference/usenixsecurity18/
presentation/quach

[38] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker:
warming serverless functions better with heterogeneity. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS ’22). Association for Computing Machinery, New York,
NY, USA, 753–767. h!ps://doi.org/10.1145/3503222.3507750

[39] Jesse Ruderman. 2012. CRIU - Checkpoint/Restore In Userspace. h!ps:
//criu.org/.

[40] Jesse Ruderman. 2016. Lithium. h!ps://github.com/MozillaSecurity/
lithium.

[41] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis,
and Dimitris Mitropoulos. 2021. PyCG: Practical Call Graph Genera-
tion in Python. In Proceedings of the 43rd International Conference on
Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 1646–1657.
h!ps://doi.org/10.1109/ICSE43902.2021.00146

[42] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory deduplication for serverless computing with
Medes. In Proceedings of the Seventeenth European Conference on Com-
puter Systems (Rennes, France) (EuroSys ’22). Association for Comput-
ing Machinery, New York, NY, USA, 714–729. h!ps://doi.org/10.1145/
3492321.3524272

[43] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David
Bermbach. 2024. FUSIONIZE++: Improving Serverless Application
Performance Using Dynamic Task Inlining and Infrastructure Opti-
mization . IEEE Transactions on Cloud Computing 12, 04 (Oct. 2024),
1172–1185. h!ps://doi.org/10.1109/TCC.2024.3451108

[44] Biswajeet Sethi, Sourav Kanti Addya, and Soumya K. Ghosh. 2023. LCS:
Alleviating Total Cold Start Latency in Serverless Applications with
LRUWarmContainer Approach. In Proceedings of the 24th International
Conference on Distributed Computing and Networking (Kharagpur, In-
dia) (ICDCN ’23). Association for Computing Machinery, New York,
NY, USA, 197–206. h!ps://doi.org/10.1145/3571306.3571404

[45] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild: char-
acterizing and optimizing the serverless workload at a large cloud
provider. In Proceedings of the 2020 USENIX Conference on Usenix An-
nual Technical Conference (USENIX ATC’20). USENIX Association, USA,
Article 14, 14 pages.

[46] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020.
Prebaking Functions to Warm the Serverless Cold Start. In Proceedings
of the 21st International Middleware Conference (Delft, Netherlands)
(Middleware ’20). Association for Computing Machinery, New York,
NY, USA, 1–13. h!ps://doi.org/10.1145/3423211.3425682

[47] Syed Salauddin Mohammad Tariq, Ali Al Zein, Soumya Sripad Vaidya,
Arati Khanolkar, and Probir Roy. 2024. LibProf: A Python Pro!ler
for Improving Cold Start Performance in Serverless Applications.
arXiv:2406.11734 [cs.SE] h!ps://arxiv.org/abs/2406.11734

[48] Kanchan Tirkey, Anisha Kumari, Sagarika Mohanty, and Prof. Bibhu-
datta Sahoo. 2023. A Novel Function Fusion Approach for Server-
less Cold Start. In 2023 International Conference on Communica-
tion, Circuits, and Systems (IC3S). 1–5. h!ps://doi.org/10.1109/
IC3S57698.2023.10169477

[49] Luc van Donkersgoed. [n. d.]. When is the Lambda Init Phase Free, and
when is it Billed? h!ps://lucvandonkersgoed.com/2022/04/09/when-
is-the-lambda-init-phase-free-and-when-is-it-billed/. [Accessed
09-14-2024].

[50] JinfengWen, Zhenpeng Chen, Yi Liu, Yiling Lou, YunMa, Gang Huang,
Xin Jin, and Xuanzhe Liu. 2021. An empirical study on challenges of
application development in serverless computing. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 416–428. h!ps://doi.org/10.1145/3468264.3468558

[51] Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian
Li, Hong Zhang, Hao Wang, and Seung-Jong Park. 2024. Rainbow-
Cake: Mitigating Cold-starts in Serverless with Layer-wise Container
Caching and Sharing. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). As-
sociation for Computing Machinery, New York, NY, USA, 335–350.
h!ps://doi.org/10.1145/3617232.3624871

[52] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does
not.Why?. In Proceedings of the 7th European Software Engineering Con-
ference Held Jointly with the 7th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (Toulouse, France) (ESEC/FSE-
7). Springer-Verlag, Berlin, Heidelberg, 253–267.

[53] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating
Failure-Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (feb 2002), 183–200.

143

https://www.usenix.org/conference/atc22/presentation/li-jie
https://www.usenix.org/conference/atc22/presentation/li-jie
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://www.usenix.org/conference/atc22/presentation/li-zijun-help
https://doi.org/10.1145/3585007
https://www.pluralsight.com/resources/blog/cloud/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start
https://www.pluralsight.com/resources/blog/cloud/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start
https://doi.org/10.1109/TSUSC.2023.3311197
https://doi.org/10.1109/TSUSC.2023.3311197
https://doi.org/10.1145/3385412.3386017
https://pypi.org/
https://pypi.org/stats/
https://doi.org/10.1145/3141235.3141242
https://doi.org/10.1145/3141235.3141242
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://doi.org/10.1145/3503222.3507750
https://criu.org/
https://criu.org/
https://github.com/MozillaSecurity/lithium
https://github.com/MozillaSecurity/lithium
https://doi.org/10.1109/ICSE43902.2021.00146
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1145/3492321.3524272
https://doi.org/10.1109/TCC.2024.3451108
https://doi.org/10.1145/3571306.3571404
https://doi.org/10.1145/3423211.3425682
https://arxiv.org/abs/2406.11734
https://arxiv.org/abs/2406.11734
https://doi.org/10.1109/IC3S57698.2023.10169477
https://doi.org/10.1109/IC3S57698.2023.10169477
https://lucvandonkersgoed.com/2022/04/09/when-is-the-lambda-init-phase-free-and-when-is-it-billed/
https://lucvandonkersgoed.com/2022/04/09/when-is-the-lambda-init-phase-free-and-when-is-it-billed/
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3617232.3624871


ASPLOS ’25, March 30-April 3, 2025, Ro!erdam, Netherlands Xuting Liu, Spyros Pavlatos, Yuhao Liu, and Vincent Liu

h!ps://doi.org/10.1109/32.988498
[54] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and

Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless
work$ows. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 1187–1204. h!ps:
//www.usenix.org/conference/osdi20/presentation/zhang-haoran

[55] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and
Ion Stoica. 2021. Caerus: NIMBLE Task Scheduling for Serverless
Analytics. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21). USENIX Association, 653–669. h!ps:
//www.usenix.org/conference/nsdi21/presentation/zhang-hong

144

https://doi.org/10.1109/32.988498
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/osdi20/presentation/zhang-haoran
https://www.usenix.org/conference/nsdi21/presentation/zhang-hong
https://www.usenix.org/conference/nsdi21/presentation/zhang-hong


𝑀!"#$%: Optimizing Function Initialization in Serverless Applications ASPLOS ’25, March 30-April 3, 2025, Ro!erdam, Netherlands

A Artifact Appendix
A.1 Abstract
𝐿!"#$% is a debloater for Python applications. Given a Python
function and a set of inputs to this function, 𝐿!"#$% auto-
matically removes all redundant modules, functions, and
classes from the modules that the application imports. This
artifact contains instructions to install 𝐿!"#$% and scripts to
reproduce key results of our paper (Figures 8, 9, 10, 11, 12,
13, 14).

The source code of 𝐿!"#$% is available at h!ps://github.com/
eniac/lambda-trim and scripts for all experiments are avail-
able at h!ps://github.com/xutingl/lambda-trim-artifact.

A.2 Artifact check-list (meta-information)
• Algorithm: Cost-driven Delta Debugging for Debloat-
ing

• Run-time environment: Python 3.10
• Metrics: E2E latency, memory, billed duration, and im-
port time.

• Output: 𝐿!"#$% outputs optimized serverless applica-
tion.

• Experiments: Figures 8, 9, 10, 11, 12, 13, 14.
• Howmuchdisk space required (approximately)?: 200GB
if keeping Docker images for all appliccations. 50GB
if cleaning up images after each experiment.

• How much time is needed to prepare work!ow (ap-
proximately)?: 2-3 hours.

• How much time is needed to complete experiments
(approximately)?: 3-4 days if experiments are run seri-
ally.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: GPL-3.0

A.3 Description
A.3.1 How to access
h!ps://github.com/xutingl/lambda-trim-artifact

A.3.2 Hardware dependencies
𝐿!"#$% is designed for serverless applications and does not
require special hardware.

A.3.3 Software dependencies
Requires Docker and AWS CLI. The complete list of depen-
dencies is provided in the repository README.

A.4 Installation
𝐿!"#$% can be installed with

1 $ cd lambda-trim
2 $ pip install -e .

A.5 Experiment work!ow
Complete instructions and explanations of the experiment
work$ow are included in the repository README. We pro-
vide an overview below.

A.5.1 Debloating (Figure 8)
Run the following to create and run baseline functions and
𝐿!"#$% debloated functions.

1 $ python experiments/debloating.py --action create-baseline
2 $ python experiments/debloating.py --action run-baseline
3 $ python experiments/debloating.py --action create-debloat
4 $ python experiments/debloating.py --action run-debloat

𝐿!"#$% runs in the create-debloat step. It may take 30
minutes (jsym) to 8 hours (huggingface) to debloat an appli-
cation.
Use experiments/debloat/fig8.ipynb to generate Fig-

ure 8.

A.5.2 Ranking (Figure 9)
To run the experiments for the various scoring methods
(memory, time, combined, random), run the following:

1 $ ./experiments/ablation/run_all.sh ranking

If you want to run a speci!c application appname for the
various scoring methods, you can run:

1 $ ./experiments/ablation/run_scoring.sh <appname>

Use experiments/ablation/plot_scoring.ipynb to gen-
erate Figure 9. This step assumes that you !rst run the de-
bloating experiment (Figure 8).

A.5.3 Varying K (Figure 10)
To run the experiments for varying K (number of modules
to debloat), run the following:

1 $ ./experiments/ablation/run_all.sh k

If you want to run a speci!c application appname for vary-
ing K, you can run:

1 $ ./experiments/ablation/run_k.sh <appname>

Use experiments/ablation/plot_varying_k.ipynb to
generate Figure 10. This step assumes that you !rst run the
debloating experiment (Figure 8).

A.5.4 Warm Starts (Figure 11)
Warm-start experiments use the same functions created
in the debloating experiment (Figure 8). This step can be
skipped if baseline and debloated Lambda functions have
been created in the debloating experiment (steps 1 and 3 in
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the debloating experiment). Otherwise, you need to create
them by running

1 $ python experiments/debloating.py --action create-baseline
2 $ python experiments/debloating.py --action create-debloat

Then, run warm-starts for baseline and debloated func-
tions

1 $ python experiments/debloating.py --action run-baseline-
warm

2 $ python experiments/debloating.py --action run-debloated-
warm

Use experiments/warm/fig11.ipynb to generate Figure 11.

A.5.5 Comparison with Checkpoint/Restore (Figure
12)

For our comparison with Checkpoint/Restore (CR) tech-
niques (Figure 12), we built a prototype with CRIU. The pro-
totype spawns a CRIU server, and the application connects to
the server through a gRPC call to force a self-dump/checkpoint.
Afterwards, we invoke the application by issuing a restore
call to the CRIU server.

We are testing four variants:
• Original application
• Original application with CR
• Debloated application
• Debloated application with CR
To speed up the building process, we provide a base Docker

image (spyrospav/criu-debloat:latest) that contains a mini-
mum CRIU build.
For a single application app, you can reproduce the com-

parison by running:

1 $ ./experiments/cr/run.sh app

Note that this creates a Docker container for each variant
and executes the test.

To build all the applications, run

1 $ ./experiments/cr/run_all.sh

Use experiments/cr/analyze_cr.ipynb to interactively
produce the bar plots with the results for both a single ap-
plication and the whole benchmark set after running the
experiments (Figure 12).

A.5.6 Checkpoint size (Table 3 – Ckpt. Size column)
The size of the checkpoints (Table 3 – Ckpt. Size column) for
both the original and the debloated application is saved in
the directory experiments/cr/output/ after running the
CR experiment.

A.5.7 Fallback (Table 4)
Create undebloated Lambda functions to be used as fallback
functions. This step can be skipped if the baseline functions
dna-visualization, lightgbm, spacy, and huggingface
have been created in step 1 of the debloating experiment
(Figure 8). Otherwise, create them by running

1 $ python experiments/debloating.py --action create-baseline
--single-app dna-visualization

2 $ python experiments/debloating.py --action create-baseline
--single-app lightgbm

3 $ python experiments/debloating.py --action create-baseline
--single-app spacy

4 $ python experiments/debloating.py --action create-baseline
--single-app huggingface

Then, run fallback experiments with

1 $ ./experiments/fallback/run_fallback.sh

A.5.8 SnapStart Simulation (Figures 13 and 14)
Use experiments/snapstart/fig13_14.ipynb to run sim-
ulation experiments and produce Figures 13 and 14. The simu-
lation is based on traces from theAzure functions dataset [45],
which will be downloaded in the notebook.

A.6 Evaluation and expected results
Serverless applications are invoked by default 100 times, and
results will be stored in results directory for each exper-
iment. Due to the nature of serverless cloud services (like
user tra"c, network, etc.), the exact numbers may di#er from
those in the paper. We provide results to generate !gures in
paper_results.
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